
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A248 120

R AR

THESIS
NPS AUV INTEGRATED SIMULATOR

by

Donald P. Brutzman

March, 1992

Thesis Advisors: Yutaka Kanayamna Michael J. Zyda

Approved for public-release; distribution is unlimited.

92-08426 o89Ill l~l lI llll!!9 il4 o2

Best
Avai~lable

Copy

,UNCILJASSIW D,
SECURITY CLASSIFICATION OF THIS PAGE

REPORTMOCUMENTATIONPAGE
SEPR SE CURITY CLASSFICATION N SEORKINGS

2a SECURITY-CLASSIFICATION AUTHORIT 3. DISTRIBUTiON/AVAILABILITY OF REPORT.
GRANGsHEuLE, Approv for public release; "SA SCEUdistribution isunlimited

4. PERFORMING ORGANIZATIONREPoRT NUMBER(S)f 5. MONITORING QRGANI ATIQN REPORT NuME(S)

. NAME 0. EFR G GANIZAION- 6. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer 9cience Dept.,1 (if applicable), NavaIPostgraduateSchool

Naval Postgraduate School v P
.6c. ADDRESS (City, State, and ZIP Code). 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA '93943-5000

U Ra. N IAMENOF FTNDION 18Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIATION[(ifapplica bIG

8c.,ADDRESS (City State, andZIP Code) 10. SOURCE OF FUNDING NUMBERSiR' PROJECT TAK ORK UNIT
ELEMENT O., NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
NPS AUV INTEGRATED SIMULATOR

12. PERSONAL AUTHOR(S)
Donald P. Brutzman

13a. TYPE OF REPORT 13b IME COVERED 14. DATE OF REPORT (Year, Month Day)1 15.PAGE COUNTMaster's Thesis I FROM .04/90 TO.03/92 I 1992, March, 171 26916. SUPPLEMEN ARY NOTATION The views expressed in this thesis are those of the author and do not reflect the officialpolicy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse ifnecessary and identify by block number)FIELD GROUP SUB-GROUP Autonomous Underwater Vehicles, Graphics, Simulation, Path.Planning,Sonar Classification, Expert Systems, Real-Time Operating Systems.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The development and testing of AutonomoUs Underwater Vehicle (AUV) hardware and software is greatly complicated by

vehicle inaccessibility during operation. Integrated simulation remotely links vehicle components and support equipment with
graphics simulation workstations, allowing complete real-time, pre-mission, pseudo-mission and post-mission visualization in
the lab environment. Integrated simulator testing of-software and hardware is a broad and versatile method that supports rapid
and robust diagnosis and correction of system faults. This method is demonstrated using the NPS AUV.

High-resolution three-dimensional graphics workstations can provide real-time representations of vehicle dynamics, control
system behavior, mission execution, sensor processing and object classification. Integrated simulation is also useful for
development of the variety of sophisticated artificial intelligence applications needed by an AUV. Examples include
sonar classification using an expert system and path planning using a circle world model.

The flexibility and versatility provided by this approach enables visualization and analysis of all aspects of AUV
development. Integrated simulator networking is recommended as a fundamental requirement for AUV research and
levelopment.

TrumiBUIOWAAILBILTY O ABTRAT UNCLASGTSEITYCDFIATOI UNCLASSIFIED/UNLIMITED [] SAME AS RPT. E] DTIC USERS
~AE OFZP I I chN86D ae 22b. TEL MPONE4lnclude Area Code) 22cBOlr utaa anayama an r. chael J. Zyda (408) 5/2305

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; ditribution is unlimited.

NPS AUV INTEGRATED SIMULATOR

by

Donald P. Brutzman

Lieutenant Commander, United States Navy

B.S.E.E., United States Naval Academy, 1978

Submitted in partial fulfillment

of the requirements for the degree of

MASTER-OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1992

Author: __________

Approved by: I LL__________________________

Yutaka Kanayama, Thesis A visor

Michaeb Zyg, Thesis Advisor

Robert B. McGhee, Chairman

Department of Computer Science

ii

ABSTRACT

The development and testing of Autonomous Underwater Vehicle (AUV)

hardware and software is greatly complicated -by Vehicleinaccessibility during

operation. Integrated simulation'remotely links vehicle components'and support

equipment with graphics simulation Workstations, allowing, complete real-time,

pre-mission, pseudo-mission and post-mission visualization and analysis in the lab

environment. Integrated simulator testing of software and hardware is a broad and

versatile method that supports rapid and robust diagnosis and correction of system

faults. This method is demonstrated using the Naval Postgraduate School

(NPS) AUV.

High-resolution three-dimensional graphics workstations can-provide real-time

representations of'vehicle dynamics, control system behavior, mission execution,

sensor processing and object classification. Integrated simulation is also useful for

development of the variety of sophisticated artificial intelligence applications needed

by an AUV. Examples include, sonar classification using an expert system and path

planning using a circle world model.

The flexibility and versatility provided by this approach enables visualization and

analysis of all aspects of AUV development. Integrated simulator networking is

recommended as a fundamental requirement forAUV research and deployment.

Accession For

NTIS GRA&I
DTIO TAB El
Unannounced El
Justificatio- -

By
Distribution/
Availability Codos

ii t Avail and/or
Ditipeia

3 Y

TABLE OF CONTENTS

1. INTRODUCTION I

A. PROBLEM STATEMENT 1

B. MOTIVA'TION 2
C. OBJECTIVES ... 3

D. THESIS ORGANIZATION 4

II. AUV RESEARCH AT THE NAVAL POSTGRADUATE SCHOOL 7

A. IMPORTANCE OF AUVs IN NAVAL MISSIONS 7

B. NPS AUV DESIGN SPECIFICATION SUMMARY 8

C. NPS AUV RESEARCH OBJECTIVES 10

D. THE FUTUREOFNAVALA 16

III. INTEGRATED-SIMULATION FOR RAPID AUV DEVELOPMEN' ,. 18

A. ABSTRACT 18

B. INTRODUCTION 19

1. Problem Statement 19

2. M otivation 19

3. Definition and Objectives of Integrated Simulation 20

4. Previous Work 20

C. AUV DESIGN AND DEVELOPMENT CONSIDERATIONS 22

1. AUV Inaccessibility During Operation 22

2. Reliability is Paramount 23

3. Wide Variety of Software Process Types 23

D. INTEGRATED SIMULATOR SOFTWARE ARCHITECTURE...z.. 24

iv

1. Software Engineering Considerations 24

2. IntegratedySimulator SOftware Architecture Re-uire ts. '24

3. Simulated and ActualComponents 24;

4. ata Transfer,Mechanisms.26

5. Distributed Artificial Intelligence.Considerations 29

E. THREE-DIMENSIONAL GRAPHCS SIMILATION......... 30;

1. Realistic Object Rendering and Real-Time Motion 30

2. Physical Modeling 30

3. Sona, and Sensor Visualization 31

F. INTEGRATED SIMULATOR HARDWARE ARCHITECTURE.. ... 31

1. Workstation Compatibility 31

2. External Network Connectivity 32

G. iMPLEMENTATONi EVALUATION AND EXPERIMENTAL
RESULTS 32

1. NPS AUV Vehicle Description and Sonar.Characteristics 32

2. NPS AUV Integrated Simulator,.33

3. Silicon Graphics IRIS WorkstationCapabilities 36

4 Laboratory AUV Simulation 36

H. ADDITIONAL APPLICATIONS 37

1 Sonar Classification Applicaion 37

2. Circle World Path Planning Application 38

3. Minefield Search Application 39

I. ADDITIONAL APPLICABILITY, LIMITATIONS AND FUTURE

WORK .. 39

1. Comparison of Theoretical and Empirical Data 39

2. Limitations to Integrated Simulation 40

3. Future Use of Integrated Simulation 41

J. CONCLUSIONS 41

V

-IV. NPS AUV INTEGRATED SIMULATOR DESIGN SPECIFICATIONSN , 42

A. NPS AUV, ACTIVESONAR SYSTEM:................4

B. NPS POOL COORDINATE'SYSTEM .44'

C. NPS AUV TELEMETRY REPLAY FILE FORMAT 46

D. SOFTWARE PROCESS'SPECIFICATIONS, 47

E_ CONCLUSIONS 48'

V. NPS AUV INTEGRATED SIMULATOR DATA NETWORK 50

A. INTEGRATED SIMULATOR DATA NETWORK OBJECTIVES 50

B. NETWORK CONNECTIVITY REQUIREMENTS AND ETHERNET . 50

C. NETWORKHARDWARE REQUIREMENTS 53

D. OPERATING SYSTEM INTERFACES 59

E. CONCLUSIONS 60

VI. AUTONOMOUS SONAR CLASSIFICATION USING EXPERT SYSTEMS. 62

A. ABSTRACT-................... 62

B, INTRODUCTION* 63

C. OVERVIEW ... 64

D. GEOMETRIC ANALYSIS OF SONARDATA 66

1. General Characteristics of Active Sonar Data 66

2. Geometric Primitives and Object Attribute Definitions 67

3. E-xtracting Line Segments using Parametric Regression 67

4. Building a Polyhedron from Line Segments 68

5. Quantifying Polyhedron Attributes 71

E. EXPERT SYSTEM HEURISTICS FOR SONAR CLASSIFICATION . 74

1. Classification Heuristics and Attribute Heuristics 74

2. Pattern-match Classification Examples 76

3. Self-Diagnosis and Self-Correction 78

F. EXPERT SYSTEM PARADIGM ; 78

vi

T1. ExpeirSystemn Characteristics . 78

2. Knowledge Representation- And Reasoning using' Facts, Rules, and'

an Inference .Enginie....................79,

3. RuleSets and Control of-Execution Flow.........79

'4. -Developing, anExpert. System.............80

G. IMLEmNtATIONANDEVALUAtION 0

-1. NPS AUV Vehicle Description andSonar Characteristics 80

2. CLIPS"Expert'System................. 81

3. NPS AVSonar Classification System ,............. 83

4., NPSAUV IntegrAted Simnulator 83

H. EXPERIMENTAL- RESULTS 84

1. ClassificAtion Test Scenario...........................84

2. E xperimental Results 84

I. -DI SCUSSIONSAND APPLICATIONS 86

1. Extendability to Video, Lasers, Complex Sonars and 'Sensor

Fusion 86

2. Intelligent Remote Sensors....................... 87

3. D~ata Redluction 88,

4. Future Use of Expert Systems by Autonomous Vehicles........ 88

J. CONCLUSIONS 89

VII. SHORTEST PATH PLANNING USING A CIRCLE WORLD 90

A. ABSTRACT... 90

B. INTRODUCTION AND PROBLEM DESCRIPTION OF CIRCLE

WVORLD...D.. 91

C. GEOMETRIC CHARACTERIZATIONS, OF CIRCLE WORLD AND

SHORTEST PATH 94

D. ALGORITHM FOR DETERMINING VISIBLE TANGENTS 102

E. SHORTEST-PATH DIJKSTRA AND A* SEARCH ALGORITHMS .104

vii

F, IMPLEMENTATION ANDRESULTS.,., .. 114

G. THREE-DUIENSIONAL APPLICATIONS AND FUTURE WORK, 115

H CONCLUSIONS, :120

VIII. REAL-TIME OPERATING SYSTEM AND AUV SIMULATION

CONSIDERATIONS 121

A. NPSAUV AND REAL-TIME OPERATIONS 121

B. HARD AND SOFr REAL-TIME REQUIREMENTS 122

C. NPS AUV PROCESS DEADLINE SPECIFICATION AND
SCHEDULING , 122

D. PARALLEL PROCESSING AND CONCURRENT PROGRAMMING 125

E. OPERATING SYSTEM COMPA-TIBILITY AND

INTEROPERABiLITY 127

F. OS-9 OPERATING SYSTEM........... 128

G. CURRENT PROBLEM AREAS AND FUTURE RESEARCH 130

IX. PERFORMANCE EVALUATION AND FUTURE RESEARCH 133

A. SIMULATOR LIMITATIONS AND PERFORMANCE

MEASUREMENTS 133

B. INTEGRATED SIMULATOR FOLLOW-ON WORK 134

C. POTENTIAL FUTURE RESEARCH 134

X. SUM MARY ... 136

APPENDIX A. NPS AUV INTEGRATED SIMULATOR USER'S GUIDE ... 137

1. NPS AUV GRAPHICS SIMULATION EXECUTION 137

2. NPS AUV INTEGRATED SIMULATOR CONTROL PANEL 137

3. LABORATORY GESPAC EXECUTION 140

viii

APPENDIX B., NPS-AUV- GRAPHICS SIMULATION.PROGRAM -SYNOPSIS' 147

.1. GRAPHICS'SIMULATION PROGRAM STRUCTURE.......147,

2NPS-PANEL-DESIGNER................147

3. GRAPHIC OBJECT MODEI'QUSING OBJECTFILE FORMAT

(cIF)...................... 149.

APPENDIX -C. NPS, AUV SONAR CLASSIFICATION SYSTEM SOURCE'

CJODE....................... 100

APPENDIX D.. SHORTEST PATH'PLANNING IN A CIRCLE WORLD 177

APPENDIX E. CIRCLE WORLD SOURCE CODE.................... 196

APPENDIX F. OBTAINING NPS. AUV INTEGRATED SIMULATOR

PROGRAMS SOURCE CODE 236

APPENDIX G. VIDEOTAPE DEMONSTRATION OF RESULTS.......... 237

LIST OF REFERENCES 240

INITIAL DISTRIBUTION LIST 248

ix

LIST OF TABLES,

Table VI. 1 Example underwater object classification types. 66

Table VII. Circle world geometric data structures 95'

Table VIII.1I AUV software, module -real-ti'me 6haiictefistics 124

x

LIST OF FIGURES

Figure2.1 The:NPS AUV is an eight footliongsubmersibe. .9

Figure 2.2 The NPS swimming pool' isan ideal-test enhvironment for theNPS

Au'V 10

Figure 2.3 Specificetest missions are downloaded into the NP.AUV using a

poolside'laptop computer 1

Figure 2.4 The low speed of the NPS AUV allows divers to swim nearby and

evaluate its performance 12

igure 2.5 General schematic of the NPS AUV. Note the twin screws, four

sonar transducers-forward, and eight lane surfaces 13

Figure 2.6 Block diagram of NPS AUV mission execution software

structure 14

Figure 2.7 A graphics simulator depicting the NPS AUV in Monterey Bay .. 15

Figure 2.8 Graphics simulation for NPS AUV sonar visualization 15'

Figure 3.1 Integrated simulator network physical connectivity 21

Figure 3.2 Integrated simulator logical connectivity using actualAUV 25

Figure 3.3 Integrated simulator logical connectivity using laboratory AUV .. 26

Figure 3.4 Three-dimensional AUV track evaluation is difficult when using

multiple two-dimensional plots 27

Figure 3.5 Example telemetry replay file format 28

Figure 3.6 Example high-level object file format 29

Figure.3.7 General schematic of NPS AUV to scale 34

Figure 3.8 Control~panel for the NPS AUV Integrated Simulator 35

Figure 3.9 Integrated simulator screen display of the NPS pool, AUV track

and all active sonar classifications 38

Figure 3.10 Integrated simulator three-dimensional representation of circle

world obstacles and shortest path in the NPS pool 38

xi

Figure 3.11 Integrated simulation display of AUV minefield searh 39

Figure4.1 NPS AUV sonar beam profiles in the NPS pool 43

Figure 42 NPS Pool Coordinate System,. 45

Figure 4.3 NPS AUV telemetry replay data file format:specification 47

Figure 4.4 NPS AUV software process summary sheet 49

Figure 5.1 NPS AUV Integrated Simulator data network 54

Figure 5.2 NPS Computer Science DepartmentNetwork portion of NPS AUV

Integrated Simulator, data netwok (part 1) 55

Figure 5.3 NPS Computer Science Department Network portion of NPS AUV

Integrated Simulator data network (part 2) 56

Figure 5.4 NPS Campus-Wide Network 57

Figure 5.5 Laboratory AUV microprocessor card cage slots 58

Figure 6.1 Autonomous sonar classification process diagram 65

Figure 6.2 Typical parametric regression line fit ,.68

Figure 6.3 Examples of colinear regressionline segments 70

Figure 6.4 Examples of convex regression line segments 70

Figure 6.5 Examples of concave regression line segments 71

Figure 6.6 Algorithm to build polyhedra from line segments 72

Figure 6.7 Summing triangle areas to determine polyhedron cross-sectional

area .. 73

Figure 6.8 Polyhedron detected edges; inferred edges and hidden edge may not

fully reveal all features of the sonar contact 75

Figure 6.9 Classification rule for a mine-like object 77

Figure 6.10 General schematic of NPS AUV 82

Figure 6.11 NPS AUV test track using left transducer only. Note swimmer

target . .. 85
Figure 6.12 NPS AUV sonar classification expert system plot of pool data and

parametric regression line segments 86

xii

Figure .6.13 Integratedsimulator scrlen display of the full NPS:pool,and all

sonar classifications 87

Figure 6.14 Integrated simulator display close-up of ,a mine-like object

classified by- the sonar expertm system using detected edges, inferred

edges, hidden edge and cross-sectional area 88

Figure 7.1 Simple obstacle representation using circles 92

Figure 7.2 Improved obstacle representation including robot, radius and safe

standoff distance 92

Figure 7.3 Simple circle world with all visible tangents 93

Figure 7.4 Simple circle world shortest path 93

Figure 7,5 Tangential line segments between circles 97

Figure 7.6 Determination of circle cross-tangents and external tangents ... 98

iigure 7.7 Determining-point-to-point visibility in circle world 100

Figure 7.8 Comparison of partial path costs 103

Figure 7.9 Sweep visibility determination ,Qoi point to all circles 105

Figure 7.10 Explanation of sweep visibility algorithm from point to all

circles 106

Figure 7.11 Pseudocode for sweep visibility algorithm from point to all

circles ... 107

Figure 7.12 Sweep visibility determination from clockwise circle to all

circles ... 108

Figure 7.13 Sweep visibility determination from counter-clockwise circle to all

circles ... 109

Figure 7.14 A' search evaluation function comparison 110

Figure 7.15 Search steps displayed for Dijkstra's search algorithm 111

Figu'e 7.16 Search steps displayed for A* search algorithm 112

Figure 7.17 Challenging circle world visibility graph 113

Figure 7.18 Excerpt from graphics plot file intermediate output 115

xiii

Figure 7.19- High-level text listing of example -NPS pool', circle ,world And

shortest.path determination..............116,

Figure 7.20 Three-dimensional cylindrical obstacles viewed'as two-dimensional'

circles..............118,

Figure 7.21 Two-dimensional representation of obstacles in-the NPS 1pool.. 119

Figure 7.22 Three-dimensional representation of 'obstacles in the NPS'pool, 120

Figure 8.1 NPS AUV software process, dAtaflwlga .. . 123

Figure 8.2, OS-9 operating system, process states.............. 129

Figure A. 1 Exanmple high-level object file 138

Figure A.2 One second excerpt of 10 Hz telemetry replay file........... 139

Figure A.3 NPS AU Iterated Simulator dials and buttons141

Figure AA4 Script of laboratory GESPAC execution of NPS AUV control loop

software (part1) 142

Figure A.5 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 2) *.. 143

Figure A.6 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 3) 144

Figure A.7 Script of laboratory GESPAC execution of NPS AUV control loop

softw~are (p~art 4) 145

Figure A.8 Script of laboratory GESPAC execution of NPS AUV control loop

software (part 5) 146

Figure B.1 NPS AUV graphics simulation program.................. 148

Figure F.1 Obtaining NPS AUV Integrated Simulator files via Internet 236

Figure G.1 NPS AUV video abstract 238

Figure G.2 Mission profile of NPS AUV video 239

xiv

ACKNOWLEDGEMENTS

Many people unselfishly contributed-to the workcontained in this' thesis andl1, wish to,

gratefully acknowledge- their ,assistance.,

LCDR Mark A. Compton USN coauthored two chapters, two papers and the

expert system source code. His expert knowledge and sound judgement were always

available to discuss any aspect of integrated simulation. In one short week he adapted

his minefield search strategy to utilize integrated simulation data passing mechanisms,

proving the accessibility of this method for graphics simulation display. I am grateful

for our opportunity to work together.

CDR.Charles A. Floyd'USN assisted in the implementation of parametric

regression andqhelped-me learn many of the nuances of our vehicle and simulation

programs. CDR Thomas A. Jurewicz USN blazed the trail with his dynamic

simulator. LT R. Scott Starsman USN derived the final form of Equation (7.1).

Charles Lombardo of the NPS technical staff provided frequent good advice on

programming in C and Unix. Russell Whalen dependably provided underwater

photography, pool test support, boundless knowledge about how to make things work

and enthusiastic encouragement. He and Walt Landaker built the laboratory AUV,

networked it and made it listen to our commands.

I thank my former Commanding Officer CAPT Alan R. Beam USN of DARPA

and Mr. Patrick Hale of Charles S. Draper Laboratories for access to the

DARPA UUV and the UUV support simulator.

Interaction with the many professors and students in the NPS AUV research

group is always intellectually stimulating. Dr. Se Hung Kwak, Dr. Neil C. Rowe,

Dr. Michael L. Nelson MAJ USAF, Dr. Fotis Papoulias, Dr. Shridhar Shukla and

Dr. James Clynch provided valuable critical analysis. Dr. Richard W. Hamming has

provided many stimulating ideas on the importance of working on projects of value.

xv

NPS AUV :project leaders Dr. Anthony M. Healey and Dr., Robert B. McGhee aret

particularly thanked for their continuing guidance' ad inspiration.

My thStis advisors are two Of the most impressiVe people that Ihave , ever met.

Dr. Yutaka Kanayama's knowledge of spatial reasoning-and robotics is unparalleled.

His ability to discern the heart of a problem and uncover fundamental principles has

been inspiring, and his-patience, and, accessibility has been invaluable;

Dr. Michaei J. Zyda provided the knowledge and tools to make real-time visual

simulation a reality. Heis always'looking three steps. ahead at where we ought to go

next. I am indebted to bothmen.

The biggest ingredient spent in this thesis has been time: time to explore new

ideas, time to understand problems, time to wrestle uncooperative software into shape,

time to write results in an understandable way. My time was spent away from my

loving wife Terri and my three wonderful daughters Hilary, Rebecca kand Sarah.

I dedicate this work to them as a small "thank you" for their support.

xvi

I. INTRODUCTION

A. PROBLEM STATEMENT

Designing, building and testing an Autonomous Underwater Vehicle (AUV)is

difficult. AUVsmust operate unattended, and uncontrolled in. a remote and

unforgiving environment., Inaccessibility greatly complicates evaluation, diagnosis and,

correction ofAUV system faults. In order to ensure complete- reliability, AUV

software and hardware need to be fully tested in the laboratory before operational

deployment. Such important testing requirements cannot be met using only a

standalone AUV.

Designing an AUV is also complex. Many capabilities are required for a mobile

robot, to act independently. Sensing, motion control, motion planning, mission

planning, failure recovery and overall control are all essential. Interaction between

vehicle processes and the mechanics of actual implementation must also be solved.

These complex problems cannot be modeled, simulated or integrated into an

autonomous mobile robot without understanding their fundamentalprinciples and

difficulties.

The primary problem addressed by this thesis is how to design and construct an

integrated simulator in order to completely visualize AUV performance in support of

distributed research and technical evaluation. All aspects of AUV software design and

simulation are considered. As direct examples of how integrated simulation may be

applied, in-depth analysis is also provided for the future roles of naval AUVs, sensor

analysis, path planning and real-time interaction.

m w w wm 1

B. MOTiVATION

The -principal motivation drivingethe develpmepnt of an AUV integrated'

simulator is to meet "the research needs of the large academ-i'cgroup workingon the,

Naval"Postgraduate School -(NPS) AUV. 'Students and professors alike have diverse

research goals that are often forced to compete for access to Vehicle system software

and limited pool test time. The need to use operational software running onactual

NPS AUV hardware is a particularly important requirement. Uck of accessibility to

the NPS AUV in a distributed laboratory environment has occasionally prevented

implementing new software applications on the vehicle. Pre-mission validation of

vehicle systems response to new software has been similarly limited in scope, resulting

in several operational test failures and frustrating delays in development. Integrated

simulation is a high-level tool that enables solutions to all of these challenges.

Scientific visualization of complex interactions greatly improves our

understanding of how things work. Human beings are visually oriented. Being able

to see and control a moving picture allows us to quickly and intuitively understand

numerous process interactions. A fundamental'computer science tenet first-expressed

by Dr. Richard A. Hamming is that "The purpose of computing isinsight, not,

numbers" (Hamming 73). Integrated simulation is intended to provide insight.

The term artificial intelligence typically refers to the study of how to, perform

,tasks'that are usually considered to require human, intelligence. Numerous such

artificial intelligence tasks are required for a mobile robot 'to achieve autonomy.

The importance of solving artificial intelligence problems is widely recognized.

Prominent robotics researcher Hans P. Moravec states,

"...solving the day to day problems of developing a mobile organism steers one
in the direction of general intelligence, while working on the problems of a fixed
entity is more likely to result in very specialized solutions... Mobile robotics may
or may not be the fastest way to arrive at general human competence in
machines, but I believe it is one of the surest-roads." (Moravec 83)

This study of integrated simulation has helped reveal valuable conclusions regarding

the artificial intelligence subjects of sensor analysis and path planning.

2

The NPS ATV Integrated Simulatorhas been designed to support complete

scientific visualization of Actual NPS AUV vehicle performance. he lessons learned

while building this integrated, simulator have: pioventhat distributed research can be

effectively accomplished when prper network connections, and data-passing

mechanisms are provided. The intograted simuiation approach,has greatvalue and

general applicability for the rapid- development of all types- of mobile robots.

C. OBJECTIVES

This thesis addresses the following research questions:

* How can an integrated simulator be constructed to-support pre-mission,

pseudo-mission and post-mission AUV evaluation?

0 How can integrated simulation support distributed research?

• Whatis required to allow-both local and remote mission -performance analysis?

* How can a laboratory AUV microprocessor be used for preliminary AUV testing
in a distributed research environment?

* How can the numerous processes that make up NPS AUV control software
communicate with the NPS AUV graphics simulation Program?

- How can inter-process communication be accomplished identically and
independently regardless of where AUV software is running?

- How can the Computer Science Department Network, Campus-Wide Network
and NPS AUV be linked together to connect the variety of processors and
operating systems that support the NPS AUV?

* How can active sonar range and bearing data be analyzed to classify sonar
contacts?

* How can a shortest path be found around circular or cylindrical obstacles?

* What real-time operating system considerations must be met in order to support
parallel operation by mutually-cooperating artificial intelligence AUV
applications interacting with a real-time environment or a near-real-time
simulation?

3

D. THESIS ORGANIZATiON

Many com onents and many concepts make u, an integratedsimulator. Conduct,

of this':reSearch, eddown many'mnterggtinginellectu trls. Conseqently the Scope

of material contained6 in this thesis is broad while the many individual conclusions are

-detailed. Givei this diversity of material, the objectives, sunmaxes ofb previous work

and conclusions are included, with each peitinent chapter. When appropriate, thesis

chapters have doub!'d as separate~articles to reportton results of geneil interest. The

five sections that have also beennwritten for indepefdent publication are'identified

below, as are the contributing coauthors.
Chapter II describes AUV research at NPS. It was originally written as a survey

article to summarize the manyfacets of AUV research at NPS, as well- as describe

expected-future roles of naval AUVs. This chapter is an important prelude to the

thesis inthat it establishes the 'scope of current and-future AUV work that an

integrated simulator -iust support. This chapter appeared as an article in

Sea Technology and was cowritten with LCDR, Mark A. Compton USN,

(Brutzman Compton 91).

Chapter III defines and develops the concept of rapid simulation for rapid

development of AUVs. As such it is the heart.of this thesis. This chapter is accepted

for presentation to the IEEE Oceanic Engineering Society Symposium on Autonomous

Underwater Vehicles 1992. Dr. Yutaka Kanayama andDr. Michael J. Zyda are

coauthors of the corresponding article'(Brutzman Kanayama Zyda 92).

Chapter IV presents design specifications that are pertinent to the specific

integrated simulator implemented for the NPS AUV. Chapter V describes specific

data network requirements for the NPS AUV Integrated Simulator. Details are

included that are based on. the difficulties and successes encountered during

implementation. The technical skills and determined efforts of Mr. Russell Whalen

and Mr. Walter Landaker were instrumental in building the laboratory AUV and

connecting it to the network.

4

Chapter VI ,presehts fundamental work on the .ffective, syhthesis of geometric

analysis and exper system heuristics for classifying underwater objects. This chapter

was also.submitted inarticle form for presentation to the IEEE Oceanic Engneeing

Society Conference OCEANS 92. This work was cowfitten With LCDR Mark A.

Compton USN and Dr. Yutaka Kanayama (Brutzman Comptont Kanayama 92).

Examples of applicability- to integrated simulation are included.

Chapter VII presents fundamental work'on shortest path planning using circular

obstacles. This work is based primarilyon Dr. Yutaka Kanayama's theories-of

optimal robot motion. Examples of applicability to integrated simulation are included

in the chapter.,

Chapter VIII describe real-time operating system considerations, all, of which are

pertinent both'to an operating AUV and an AUV integrated simulator. This chapter

has also-been included inaNPS technical report (Badr Byrnes Brutzman Nelson 92)

and was edited by Dr. Michael L. Nelson, MAJ USAF.

Chapter IX presents NPS AUV Integrated Simulator limitations and performance

measurements. Chapiter X discusses the many promising opportunities for potential

future research and follow-on work using the NPS AUV Integrated Simulator.

Chapter XI predents conclusions and recommendations.

Appendix A is a guide for NPS AUV users and software developers who are

interested in utilizing the NPS AUV Integrated Simulator. Appendix B is a synopsis

of the lengthy source code written for the graphics simulation component of the

NPS AUV Integrated Simulator.

Appendix C isi the "C" Language Integrated Production System (CLIPS) expert

system source code for NPS AUV Sonar Classification System. This program

demonstrates the concepts described in Chapter VI and was cowritten with

LCDR Mark A. Compton USN.

Appendix D reproduces an as-yet-unpublished paper cowritten with Dr. Yutaka

Kanay.qma that provides mathematically rigorous theoretical detail on circle world

5

shortest path planning (Kanayama Brutzman 91). Appendix Eprovides sourcecode

implementation-bf the circle world path planning algorithms.

AppendixF describes how NPSAUV Integrated Simulator sourcd code may be

obtained via inenet Graphics, simulation, sonar classification and path planning

:software programs 'are all avaiable.

Appendix G is a videotape demonstration of pertinent thesisresults. Video is

essential to portray the power and effectiveness provided by real-time graphics.

simulation and scientific visualization techniques. This-videotape appendix includes a

short segment on the NPS AUV presented at the IEEE Robotics and Automation

Conference 1992 (Brutzman Floyd Whalen 92). The short segment was coproduced

with CDR Charles A. Floyd USN and Mr. Russell Whalen, and benefited from the

technical advice of Dr. Michael J. Zyda and Mr. David Pratt.

6

IL AUV RESEARCH AT THE NAVAL POSTGRADUATESCHOOL

Naval officers and civilian scientists at NPS, are working on an AUV that is

helping changethe nature of undersea warfare. Under.the guidance of faculty in the

Computer Science, Mechanical- Engineering and Eiectrica'i Engineering departments,

NIPS students have developed and builta working AUV that can maneuver and operate

submerged and unattended, The NPS AUV is a robotic platform for basic research,

and thesis work in control technology, artificial intelligence, computer visualization,

and systems, integration.

A.. IMPORTANCE OF AUVs IN NAVAL MISSIONS

Unmanned autonomous Submersibles have many characteristics that make them

particularly attractive for employment in naval missions'(Polmar 91). Vehicle

autonomy allows independent operation in changing situations without a tether or any

direct human intervention. Removing the need for a crew permits routine operation in

extremely deep, shallow, or tactically hazardous environments, and- also eliminates the

requirements for large and expensive support equipment. Small size and quiet

propulsion systems result in unmatched stealth. The relatively low cost of AUVs

enables the acquisition of many units that might serve as force multipliers for each of

the Navy's warfare communities.

Many robotic vehicles are already deployed in the fleet and saw action in

Operation Desert Storm. Tomahawk cruise missiles are autonomous weapons that

inflicted heavy damage with precision accuracy (Arthur 91). Remotely piloted

vehicles (RPVs) flew with great success in reconnaissance and naval gunfire support

missions, to the extent that Iraqi soldiers initially made RPVs priority targets but later

surrendered to them (Arthur 91) (Burke 91). Remotely operated vehicles (ROVs)

controlled by minesweepers have the capability to send back live underwater video in

order to aid in the hazardous and time-consuming job of classifying and deactivating

7

mines (Polmar-87). Adding auton6my-to unmAnned vehicles dramatically increases

their independent 6perating range and" tactical capabilities. The,type ofresearch work

being conducted at NPS is of fundamental importance in making these performance

breakthroughs possible for unmanned underwater vehicles.

B. NPS-AUVDESIGN SPECIFICATION SUMMARY

The design and construction of ithe firstNPS AUV began in 1987. NPS-AUV I

was a two-foot prototype model with operational. screws and gyros that was used for

the investigation of model-based maneuvering controls, including the automatic

identification of significant hydrodynamic characteristics (Healey 89). The full-scale

vehicle NPS AUV II was constructed by-the students, ,technical staff'and faculty of the

Mechanical Engineering department, and required over a year to design and build

(Good 89). This AUV was launched (complete with traditional champagne

christening!) by the Superintendent, RADM Ralph W. West, Jr. at the NPS pool on

June 15, 1990. According to-Admiral West, a submarine officer,

"The AUV is one of the new technologies that will play a major role in
maintaining the effectiveness of our fleet units as the threats facing us become
more sophisticated and diverse." (West 91)

The current NPS AUV is eight feet lng and neutrally buoyant, displacing 387

pounds (Figure 2.1). Its overall size and shape is comparable to a dolphin. Current

vehicle endurance is two to three hours. Maximum speed of the NPS AUV is about

two'knots. The NPS AUV's turning diameter is under three body lengths, designed to

be ideal for-mancuvering in the large NPS swimming pool (Figure 2.2). The low

noise level in the NPS pool allows precise testing in a controlled environment.

Specific test missions are downloaded into the NPS AUV using a poolside

laptop computer (Figure 2.3). NPS AUV posture and sonar data are recorded ten

times per second throughout each mission and then immediately uploaded afterwards

for post-mission analysis. By following mission software commands, the NPS AUV

can change course and depth without any external direction. The low speed of the

vehicle allows divers to swim nearby and safely evaluate its performance (Figure 2.4).

8

1,'

Figure 2.1 The NPS AUV is an eight foot long submersible

Open-ocean testing is feasible but will be reserved for a more robust follow-on

vehicle.

Initial AUV project objectives include the study of mission planning, navigation,

collision avoidance, real-time mission control and replanning, object recognition,

vehicle dynamic response and motion control, and post-mission data analysis. The

primary components of the AUV are an aluminum hull, fiberglass sonar dome, four

high-frequency directional sonar transducers, twin counter-rotating four-inch propellers,

lead-acid batteries, eight plane surfaces, and a Gespac computer running a Motorola

68030 processor with a 2MB RAM card. Four cross-body tubes have been included to

house a new type of thruster that is under development. When completed, these

thrusters will allow the AUV to control vehicle posture and maintain station in the

presence of underwater currents. Figure 2.5 shows a general schematic of the AUV.

9

, • ' oo

Figure 2.2 The NPS swimming pool is an ideal test environment for the
NPS AUV

C. NPS AUV RESEARCH OBJECTIVES

The scope and missions of the AUV project are not restricted by any specific

programmatic requirements. Dr. Robert B. McGhee, Computer Science department

chairman states,

"The primary purpose of our AUV work has always been to support student
thesis and dissertation research without restrictions." (McGhee 91)

Given this climate of academic freedom, a myriad of topics are under active

investigation and are resulting in numerous advances in underwater vehicle technology.

Already over fifty theses and research papers have been published about the

NPS AUV.

The Mechanical Engineering department has primary responsibility for the

design, construction and operation of this submersible robot. Dr. Anthony J. Healey is

the Mechanical Engineering department chairman and the AUV project principal

10

Figure 2.3 Specific test missions are downloaded into theNPS AUV using
a poolside laptop computer

investigator. He has assembled a diverse group of over two dozen faculty and

students, making this project the largest group research effort at NPS. Dr. Healey

states,

"The most important aspect of the project is to involve naval officer students in
the development of control technology for future AUVs, utilizing their
considerable experience. It also educates them in the potential capabilities of
AUVs and the technical difficulties yet to be solved." (Healey 91)

Mechanical Engineering and-Electrical Engineering department research is

currently investigating vehicle stability and control, modeling submerged dynamic

behavior, systems integration and guidance/autopilot design. Of immediate interest is

integrating low-power components such as ultrasonic sonars, steering and diving

controllers, guidance circuitry, Global Positioning System (OPS) receivers, and
miniaturized inertial measurement units currently used for cruise missile navigation.

11

- , :. - ,

and evlut its performance,

I *~ -

.- - -- * . ,.

: ' , ,W J

Figure 2.4 The low speed of the NPS AUV allows divers to swim nearby
and evaluate its performance

Computer science programmers are designing the "brains" of the AUV. This

robot must be able to transit independently to the desired operating area, perform a

mission, return and report despite any unpredictable tactical situations that might

occur. Real-time mission planning and obstacle avoidance are critical aspects of these

tasks. The basic operations of the AUV resemble those found in naval ships and

aircraft. However, piloting and tactical functions normally performed by humans must

be independently handled by the AUV's on-board computer. Not surprisingly, AUV

software organization is similar to a ship's underway watch team. Navigation,

obstacle avoidance, data collection and mission execution must all occur continuously

and in real time (Healey et al. 91). Figure 2.6 is a block diagram of the AUV mission

execution software structure. Most of the functions represent tasks normally

performed by human operators on submarines.

12

Sonar transducers Tunnel thrusters Drive motors

EW RUSSELL
SIE W WHALEN

Figure 2.5 General schematic of the NPS AUV. Note the twin screws, four
sonar transducers forward, and eight plane surfaces

Real-time three-dimensional computer graphics simulation of the AUV is being

used for extensive laboratory evaluation. New hardware and software can be tested

prior to installation and operation, minimizing risk and saving time and money.

Replays of actual data recorded by the AUV can be used for visualization of remote

environments and detailed post-mission data analysis. Silicon Graphics Inc.

workstations identical to those used for special effects in movies such as

Terminator 2: Judgement Day (Myers 91) are networked together and provide massive

processing power. Because the AUV hull shape is similar to the Swimmer Delivery

Vehicle used by Navy special warfare SEAL teams, a sophisticated mathematical

model was already available for simulator use to accurately recreate vehicle dynamic

motion and response characteristics (Zyda 90). This dynamics model has been

validated by pool testing. NPS AUV graphics simulations can use actual hydrographic

13

MISAUV SOFTWAREi'ROCLsS DATAFLO0W DIAGRAM,

DlARSB O~ISTIS, SIINAN

KNOW PAT(

OSALSMSION I

DATAS OBTM M$

NEW SYSTEM
CBLSTACLE REFRECTUSA7

FLOYD
Figure 2.6 Block diagram of NPS AUY mission execution software

structtue

sounding data from Monterey Bay provided by the U.S. Geological Survey to show

the detailed level of display and analysis possible (Figure 2.7) (Jurewicz 91).

Display of sonar beams and the sonar environment can also assist operators in

evaluating AUV performance (Figure 2.8). Multiple simulation features can be

combined in an integrated simulator. Complete visualization of the ocean environment

and AUV system response permits sonar data post-mission analysis, precise

hydrodynamics modeling and extensive software testing to be performed in real time.

Artificial intelligence techniques allow a robot to perform tasks normally

requiring human intelligence. Many artificial intelligence methods are being

developed for the AUV. Path planning and spatial reasoning are used to determine

how to avoid obstacles and optimally travel from one location to another. Mission

planning enables the AUV to execute an ordered mission, while mission replanning

14

Figure 2.7 Agraphics simulator depictingthe NPS AUV in Monterey Bay

Figure 2.8 Graphics simulation for NPS AUV sonar visualization,

flexibly adjusts to changing tactical situations, such as detection of an unexpected

obstacle or appearance of a hostile submarine. Search techniques can be used to map

15

minefields. Expert systems canproess sonar data and perform object recogntion6 and,

classification. Neural networks can ,be used-for fault diagnosis ,and,mechanical system

control.,

Systems integration is obviously a key factor in, tIhe,construction-of a vehicle

with so many different components. There are a large number of hardware and

software systems that mutually depend-upon each other for successful operation.

Similarly, -there are a large number of people working on, new designs- in each of these

areas. The requirement to build a robust and independent system means that

reliability, redundancy and interoperability- must be thoroughly considered during each

phase of desigr'and construction,

D. THE FUTURE OF NAVAL AUVs
Potential AUV military applications are limited only by the imagination. Mine

detection and minefield mapping might be completely performed by single or multiple

AUVs in direct support of an independent submarine or surface ship. Multiple AUVs

could quickly clear transit lanes for fleet:deployment or amphibious assault. Dropping

an AUV from an aircraft could be a quick way to initiate harbor or choke point

surveillance, positioning the AUV to actas a"'bell,ringer" to warn when hostile ships

get underway. AUVs have the ability to conduct bottom search- in any sea. state

without requiring a controlling vessel to remain on station. This capability would keep

critical operations such ashigh-value object searches or amphibious landing

preparations inprogress despite difficult weather conditions. Round-trip or one-way

delivery of underwater sensors and weapons becomes much less hazardous. An AUV

configured as an artificial target would be an intelligent and realistic adversary during

antisubmarine warfare exercises. Software control of autonomous vehicles permits

relatively rapid and inexpensive upgrades to quickly adapt to changing enemy

capabilities and new mission requirements. Finally, the low radiated noise and small

active sonar return of an AUV should result in unmatched stealth, possibly leading to

new fleet missions that are not currently feasible.

16

Much, exciting work is in, storefor future AUV research and development

Video camera recording, real-time vision processing and-automatic imagRoe

interpretation are possible. Green laser (543 nAnometer) range-finding is already

operational on the Monterey Bay Aquarium Research Institute ROV Ventana
(Davis 91). H-igh energy-densit power sources ire continued development in

order to take full advantage of AUV capabilities. High' performance sonar

modifications arebeing investigated to-match AUV space and mission requirements.

Modular connections for robot arm manipulators, replaceable packages and deliverable

payloads need. to be designed for flexible support of all potential mission requirements.

Improved computer architectures such as parallel processing transputers will allow

simultaneous accomplishment of many tasks in real time, as well as extend the

autonomy and artificial intelligence capabilities of these vehicles. High-bandwidth

acoustic modems can be used for rapid remote communications with an operating

AUV. Battle group commandersshould have the ability to receive remote sensor

reports via radio uplinks from AUVs on-station and send mission commands in return.

Intelligent mobile robots will be performing many missions for the U.S. Navy in

the near future. Their employment as extensions of our ships, submarines and aircraft

will become commonplace. The imaginations, technical prowess and operational

experience of officers and faculty at NPS are making this future a reality.

In undersea warfare, silence and nondetectability are the most important factors

in achieving stealth and tactical advantage. The military significance of autonomous

underwater vehicles was emphasized during a recent visit to NPS, by a Soviet naval

delegation. A small group of senior Soviet officers was-shown the NPS AUV. The

group looked and listened politely. The Soviet admiral asked only one question: "Is

it quiet?"

Indeed it is.

17

HiI. INTEGRATED SIMULATION FOR RAP IDAUV DEVELOPMENT

A. ABSTRACT

The development and testing of Autonomous Underwater Vehicle (AUV)

hardware and softwareis greatly complicated by vehicle inaccessibility during

operation. Integrated simulation remotely links vehicle components and support

equipment with graphics simulation workstations, allowing complete real-time,

pre-mission, pseudo-mission~and post-mission visualization and analysis in-the lab

environment. Integrated, simulator testing of AUV software and hardware is a broad

and versatile method that supports rapid diagnosis and robust correction of system

faults.

Pre-mission simulator AUV testing permits experimental evaluation of

developmental software. Pseudo-mission simulator testing-of AUV processes employs

an identical laboratory microprocessor or remote communication with a

testbench-mounted operating AUV, permitting end-to-end testing of all software and

hardware. Post-mission simulator playback of recorded telemetry, sensor data and

system state transitions supports in-depth reenactment, playback and analysis of

in-water operational results.

High-resolution three-dimensional graphics workstations can provide real-time

representations of vehicle dynamics, control system behavior, mission execution, sonar

processing and object classification. Use of well-defined, user-readable mission log

files as the data transfer mechanism allows consistent and repeatable simulation of all

AUV operations. Examples of integrated simulation are provided using the Naval

Postgraduate School (NPS) AUV, an eight foot, 387-pound untethered robot submarine

designed for research in aaaptive control, mission planning, mission execution, and

post-mission data analysis.

The flexibility, connectivity and versatility provided by this approach enables

sophisticated visualization and analysis of all aspects of AUV development. Integrated

18

simulator networking is recdmmendedas a fundamental. requiremeht for

comprehensive and rapid AUV research and' development.

B. INTRODUCTiON

1. Problem Statement

Designing, building and testing an Autonomous Underwater Vehicle (AUV)

is difficult. Unlike most other mobile robots, AUVs must operate unattended and-

uncontrolled in a remote and unforgving environment. Inaccessibility greatly

complicates evaluation, diagnosis and correction of AUV system faults. In order-to

ensure complete reliability, AUV software and hardware need to be fully tested in the

laboratory before operational deployment. Such important testing requirements cannot

be met using only a standalone AUV.

2. Motivation'

The principal motivation driving the development of an AUV integrated

simulator is to meet the research needs of the large academic group working on the

Naval Postgraduate School (NPS) AUV. Students and professors have diverse

research goals that are often forced to compete for access to vehicle system software

and limited pool test time. The need to use operational software running on actual

NPS AUV hardware is a particularly important requirement. Lack of accessibility to

the NPS AUV in a distributed laboratory environment has occasionally prevented

porting new software applications into the vehicle. Pre-mission validation of vehicle

systems response to new software has been similarly limited in scope, resulting in

several operational test failures and frustrating delays in development.

The integrated simulation approach has great value and general

applicability. The NPS AUV Integrated Simulator has been designed to support

complete scientific visualization of actual NPS AUV vehicle performance. The

lessons learned while building this integrated simulator have proven that distributed

research can be effectively accomplished when proper network connections and

data-passing mechanisms are provided.

19

3., Definition and Objec tives of Integated Simulation,

,Integrated simfuation-is dfeddasithe effective networkiig. of a

.three-dirnensioial graphical simrulation Workstation-with an AUVm'iWcrgprocessor,

appropriate support equipment and all software development workstations. Integrated

simulation allows coordinated utilizatiOn' of computer resources for maximum realism

and effectiveness. The purpose of this paperis to demonstrate the use of integrated

simulation as an- essential approach for rapidly designing, developing and evaluating

AUVs.

An AUV integrated simulatorremotely links, vehicle components and

support equipment wit, Igraphics simulation workstations. Networking allows

complete pre-mission, pseudo-mission and post-mission visualization and analysis in a

real-time lab environment. Complete integrated simulator testing of software and

hardware supports prompt diagnosis and robust correction of system faults. Figure 3.1

shows connectivity for a sample AUV integrated simulator network and primary

components.

Pre-mission simulator testing of AUV software permits experimentation and

preliminary evaluation of developmental software. Pseudo-mission testing using an

identical laboratory microprocessor, or remote communication with an actual AUV

permits end-to-end testing of all AUV software and hardware. Post-mission simulator

playback of recorded telemetry, sonar'sensor data and system state transitions supports

in-depth reenactment, playback and analysis of actual operational results.

4. Previous Work

Several graphics simulators have been previously developed at NPS to

support AUV research. These simulators all operate on Silicon Graphics Inc. Iris

graphics workstations. Seow Meng Ong developed a simulator that remotely networks

an Iris workstation with a Symbolics Inc. Lisp machine for real-time communication

by mission planning and path planning software (Ong 90) (Zyda 90). CDR Thomas

A. Jurewicz USN developed a real-time NPS AUV simulator that featured a complete

hydrodynamics model and bathymetric survey terrain data of Monterey Bay

20

[7((iIem eleetr

• gateway BaTRA .TED/SIuMULTRDATA, N WORK-

lProcessar replay file. A AV-4 1
[MOM=

propellers A avigation [objectles
surfaces, speed, gyrms
hrUst sensors

sonar pings I self monitor!....... (U hd dy m r) "

AUV' hydrodynamilc respows
" t is produced by vehicle thrust

sa rand drag through the water.

Figure 3.1 Integrated simulator network physical connectivity

(Jurewicz 91) (Zyda 91). CDR Charles A. Floyd USN extended the Jurewicz

simulator to demonstrate sonar detection and collision avoidance software (Floyd 91)

(Floyd Kanayama Magrino 91). MAJ Ronald B. Byrnes USA and LCDR David L.

MacPherson USN utilized the network capabilities of the Ong simulator to visually

compare hierarchical and subsumption software architectures for AUV control

(Byrnes 92).

Other less complex simulation methods have also been used for NPS AUV

development. Most NPS AUV control system theses have analyzed vehicle

performance parameters individually using mathematics support packages such as

MATLAB (Mathworks 89), forcing researchers to visually correlate numerous

two-dimensional plots of telemetry data in order to interpret test results.

Other underwater vehicle projects have also used offline graphics

simulation as a design tool. As an example, C.S. Draper Laboratories has a large and

sophisticated simulator that supports the development of the Defense Advanced

21

Research Projqcts Agency (DARPA) Unmanne Underwater'Vehicle(UTY). This

simulator employs sophisticated computer models of hydrodynamic characteristics and

,indiYduA1,physicalenonent responses. Missionsoftware is loaded on-a separate"

mainframe to emulate vehicle multiprocessor response. The simulatordoes, not

incorporate actual DARPA UUV multiprocessor hardware or allow direct playback of

UUV system and sensor daa collected in the water. However the many capabilities of

this powerful support simulator-have signifihantly contributed to the reliability of the

DARPA UUV, allowing successful and rapid progress along an ambitious development

schedule (Pappas 91) (Hale 91).

All of these simulation approaches successfully demonstrate the concepts

they are intended to evaluate. However, none of these simulators were designed to

use actual vehicle hardware or to provide general extendability to support every aspect

of AUV research.

C. AUV DESIGN AND DEVELOPMENT CONSIDERATIONS

AUVs are complex systems. A number of, design and employment criteria

unique to AUVs must be considered when determining integrated simulator

specifications.

1. AUV Inaccessibility During Operation

The development and testing of AUV hardware and software is greatly

complicated by vehicle inaccessibility during operation. AUVs are designed to operate

with complete independence in an environment that makes communication and

monitoring difficult. Vehicle independence design constraints leave operators unable

to monitor performance, diagnose problems or override failures. This inaccessibility is

perhaps the biggest liability inherent in AUV testing since it can easily lead to

catastrophic failure and vehicle loss. Even when supervisory control is possible

through use of a tether, or underwater communications, underwater vehicle systems

must be robust enough to recover and return in the event of system failures combined

with communication loss. Integrated simulation can fully test fault tolerance and

22

emergency'recovey proedures of an AUV, prior to risking loss of communidations

during independent operation.

2. Reliability,is Paramount

Loss of an AUV' due to intemal -failure or miability to Cope with an

unpredictable environment is unacceptable dueto the current high cost of AUV

constructiOn and Support. Furthermore if an AUV is employed :in military missions

such as submarine support or minefield search, human'lives and, operational success

may depend on complete vehicle reliability. Thus the principal requirement for any

AUV is that the vehicle operates dependably in all possible scenarios, and under all

possible failure conditions. Pre-mission verification of proper AUV performance using

an integrated simulator is the only Way to ensure complete vehicle integrity and'verify

strict reliability requirements for, all software and hardware components.

3. Wide Variety of Software Process Types

The highly complex behaviors expected of AUVs are only possible when

numerous software modules are written to handle functions such as path planning,

sonar interpretation, mission control etc. Such software programs can be considered

artificial intelligence (AI) applications in that human intelligence might otherwise be

required to perform these challenging tasks. It is important that these high-level

software modules are able to fully interact with each other for proper execution and

evaluation. However such interaction is difficult when-the researchers developing

software are distributed over a network. Integrated simulation provides full

connectivity between research software modules-and the AUV microprocessor.

Integrated simulation also provides data-passing mechanisms that permit interprocess

communication regardless of the various host operating systems or programming

languages used.

23

D. INTEGRATED SIMULATOR SOFTWARE ARCtHITECTURE

1. Software Engineering Considerations

Proper design of an AUV'integrated simulator addresses many requirements,

including repeatability, flexibility, cost-effectiveness, portability, maintainability, future

growth potential and ability to upgrade. These goals can be met by-following

fundamental software engineering principles such as clearly defining software module

specifications and functional descriptions. Formally defined data dictionary entries;
data structures and spatial coordinate systems are also important. Specifications must

be flexible enough to support future improvements and comprehensible enough to be

rigorously followed. Frequent and thorough communication and cooperation among

project members is important in order to establish formal project standards and ensure

long-term success.

2. Integrated Simulator Software Architecture Requirements

Integrated simulator software must perform a large number of tasks. The

AUV must be modeled using some simulated components (e.g. control surfaces,

propellers, gyrocompass) together with actual running AUV mission software. Vehicle

physical motion and behavior can be provided by the state equations of a dynamic
response model. The world model needs to include stationary obstacles, mobile

objects and the sensor interactions expected to occur as the vehicle probes the external

environment model. Developmental AUV processes that have not yet been ported into

the vehicle mission software need to have some way of interfacing with both the AUV
microprocessor and the simulation. Operating system and programming language
incompatibilities should not be an impediment to AUV software developers. Finally

and most importantly, a powerful graphics workstation must render an external view of

the simulated world in three dimensions with full functionality and real-time response.

3. Simulated and Actual Components

Maximum simulation realism is provided when actual AUV components are

tested end-to-end in the laboratory. For example, an AUV might be fixed in place on

24

blocks in a test tank while a test mission was conducted. hroper activatibn of sonar,

rudders, diving planes and propellers would provide positive indications of correct

performance. Itis interesting to note that networking a test-tank AUV to a graphical

simulator can give evaluators real-tine insight into what the vehicle "thinks" it is

doing. However, if a laboratory AUV microprocessor is used instead of the actual

vehicle, the missing vehicle physical components must be separately simulated. Such

simulation is accomplishedby modular substitutiowof-mathematical models for the

missing physical components. A particular benefit of this approach is that

AUV software testing is freed from direct interaction with the actual AUV, since the

vehicle might be operating, undergoing repairs or otherwise inaccessible. The logical

relationships between AUV, simulator, laboratory development network and real-world

environment are shown in Figures 3.2 and 3.3.

pteway IS- AUV INTGRATED SIMATOR DATA NEWORK

[~~~7 (post-missioITleer

....... High-level

propellers naviation object files
surfaces spee, gros'
thrusters ! sensors
sonar igs self moaitor:........

%~ AUV hydrodynamic response
so= is produced by vehicle thrust

sonarueturns and drag through thewater.

Figure 3.2 Integrated simulator logical connectivity using actual AUV

25

gateV y AUV INTEGRATED SIMULATOR DATA NETWORK

HighTeleelyllr avstoobject files

thruster sensors
sona pigs elfmonio

SSimulationworld models: navigation,

environmnt, lidrodynamici, sonar,
vehicle hardware and self monitor

Figure 3.3 Integrated simulator logical connectivity using laboratory AUV

4. Data Transfer Mechanisms

Data transfer mechanisms are a critical component of interprocess

communication. Two file types and two data transfer mechanisms are considered:

telemetry replay files, high-level object files, remote file transfer and stream sockets.

In order to portray and replay AUV behavior, telemetry recorded by the

vehicle must be readable by the integrated simulator. Typically such data includes

vehicle position, vehicle orientation, linear and rotational velocities or accelerations,

sensor data and vehicle state information, all repeated at a high data rate. Telemetry

replay files can be saved by an AUV for post-mission upload or transmitted during

operation. These files can also be read (with effort) by human operators, or ported as

input to mathematics support packages for selective analysis of system parameters.

However, Figure 3.4 illustrates the difficulty in portraying

three-dimensional AUV track data using two-dimensional time-versus-z and x-versus-y

plots (Compton 92).

26

A/

z Y

N--

Figure 3.4 Three-dimensional AUV track evaluation is difficult when using
multiple two-dimensional plots

Use of well-defined and consistent telemetry replay files allows repeatable

simulation of all AUV missions. Telemetry replay files are also a convenient method

for new mission software to record primary aspects of AUV behavior during

standalone testing for later visualization on the integrated simulator. Figure 3.5 shows

an example telemetry replay file format.

27

<time> ;'telemetry data, point tim

<x> <y >' <z> ; vehicle estimite of position,

<*> <0>, <Y> ; measured 3D orienttion

<p>, <q> <r> ; navigation system velocities

<A dive> <A mdder> ;,plane. sufface positions

<rpm> <log speed> ; ordered and measured speed

<sensor data fields> ; all possible sensor returns

<wildcard> ;extra slot for mission-dependent, use
Figure 3.5 Example telemetry replay file format

High-level object files allow communication of symbolic data such as

position of objects, object classification, operator instructions and interprocess

commands. Keeping such' data in plain text makes them readable by human, operators,

individual AUV software processes and the integrated simulator. Optional time

parameters on each command line allow high-level object files to supplement

telemetry replay files for synchronized real-time playback. This combination of

telemetry replay files and high-level object files allows simple and effective

communication of all possible types of AUV information. An example high-level'

object file format is shown in Figure 3.6.

File transfer is the fastest and easiest way to record and communicate large

amounts of data over a distributed research network. An integrated simulator network

must be able to transfer telemetry replay and high-level object files between all

network nodes.

Once a file transfer capability has been established, stream sockets can be

implemented if transfer of individual data packets is desired (Barrow 88). Stream

sockets can connect all processors on an integrated simulator network, allowing direct

interprocess communication, near real-time data transfer and better evaluation of

multiple process interaction.

28

Environment "worldfilename" ' changedefaultworld file

AUV <x> <y> <z> ; AWIVifiitial pogition.

Point <x> <y> <z> ;Pointposition, c6rdinates

Segment <xl> <yl> <zi> <x2> <y2> <z2> ; endpoint coordinates

Wall <xl> <yl> <zl> <x2> <y2> <z2> ; opposite comers

Cylinder <x> <y> <z> <r> <h>

Mine <x> <y> <z> <scale> [time <t>]) time optional,

Ship <x> <y> <z> <scale> [time <t>]

Object "filename" <x> <y> <z> [time <t>]

Message [time <t>] ... free format text here ...

messages can be mission log outputs or interprocess communication

Figure 3.6 Example high-level object file format

5. Distributed Artificial Intelligence Considerations

A large number of interrelated AI software processes are required for an

AUV to competently perform the many behaviors required of an independent

submersible. In order to keep up with demanding mission requirements, these

processes must be capable of performing in real time and in parallel. Similar real-time

and parallel processing support will be necessary for a graphics workstation to provide

correspondingly realistic playback and interaction.

Interprocess communication and real-time process interaction are usually

difficult to implement, especially if multiple user, multiple programming language or

multiple operating system bottlenecks exist. The data transfer mechanisms described

previously permit complete interaction among dissimilar distributed Al applications,

regardless of whether these applications are internal or external to the AUV. Tiis

straightforward approach allows complete user and simulator accessibility to

intermediate process outputs.

29

E. THREE-DIMENSIONAL GRAPHICS SIMULATION

High-resolution thre -dimeiisional graphics workstations-provide iealistic

representations of Vehicle dynamics, control, syStemr behavior, mission- execution, sonar

processing.and object classification.

1. Realistic Object Rendering and Real-Time Motion

The primary graphics requirement for an integrated simulator is realistic

rendering and movement of virtual objects in realtime. This capability is essential for

visualizing, an AUV's interaction With an underwater world in order to fully evaluate

-the proper operation of complex AUV software and hardware. Numerous graphics

techniques can beused to provide a believable graphics display, ranging from drawing

simplepolygons to overlaying complextextures. Realistic portrayal of allobjects in

an underwater world allows intuitive and thorough. analysis of large amounts of AUV

data.

Maintaining a real-time playback capability is important for realistically

rendering AUV interaction with physical objects. The graphics simulator program

must be able to quickly refresh complex screens in order to 'visually present large

amounts of data. Local empirical studies show that a 6 Hz screen update rate and

input device response loop are the minimum requirements for simulator screen motion

to appear smooth and realistic during operator interaction. Frame rates of 20-30 Hz

may be needed for realistic illusion of rapid motion (Brooks 88). Speed can be

increased and graphics pipeline loading reduced through simplified object geometry,

simplification of lighting models, simulator source code optimization and graphics

performance tuning techniques.

2. Physical Modeling

All AUV-related physical processes can be mathematically modeled with a

high degree of accuracy. Vehicle physical response can be predicted using state

equations, positional constraints, inverse kinematics and dynamics (Jurewicz 90)

(Thalmann 90) (Badler 91). Sonar acoustic behavior can be modeled with increasingly

complex levels of detail in order to meet both realism and system playback

30

requirements (Etter 91),. Individual AUV hardware componentscan be simulated

using:control system models of transiet and steady-state response. Objectmotion.is

adequately modeled using simple kinematics. Object-positions caqh-eeasily updated

whenever more recent correlated-sonar data becomes. available., lngeneialphysical

modeling, is less processor-intensive than graphics~renderingand-adds no apparent

overhead to graphics workstation, response when properly parailelized.(Jurewiczg9)

(Zyda9 1).

3. Sonar and Sensor Visualization

Sonar data is often difficult to visualize since acoustic beam and ray path

behavior is very different from our vision-based perceptual expectations. Sonar

remains the primary sensor used for intermediate and long range underwater detection.

Sonar can also be quite effective when used for short range detection, object feature

extraction or measurement of object characteristics such as doppler or frequency

response. Color graphics visualization can portray the real-time behavior of sonar

beams in three dimensions, allowing AUV designers to troubleshoot complex

problems, optimize vehicle sensor performance and better understand how an. AUV is

interacting with the environment (Brutzman Compton 92) (Brutzman 92)

(Compton 91). Other types of sensors such as laser rangefinders can also be

displayed. Sensor visualization capabilities are valuable features for an integrated

simulator.

F. INTEGRATED SIMULATOR HARDWARE ARCHITECTURE

1. Workstation Compatibility

There are surprisingly few hardware constraints on the individual

workstations making up the distributed network portion of an integrated simulator. A

variety of normally incompatible operating systems and programming environments

may be used as long as network connections provide a open data transfer path. Even

application source code may be in a language foreign to the AUV. For example, a

high-level language (e.g.. Lisp, CLIPS or Prolog) may be used for rapid prototyping

31

and initialdevelopment. Testing igsthen accomplished usinginteprocess

communication and real-time daia transferofhigh-level' object file infbrmatioh with,

the AUV. After initial~process testing is complete, working high-level'langUage code

can be translated andported into: the native language of the UV (e.g. ANSI C). This

open architecture approach allows great.flexibility and maximum use of available

resources.

2. External Network Connectivity

Fully networked connections between~all major support, components of the

AUV is essential to provide a responsive research environment. Additional external

network connections willfurther extend AUV integrated simulator capabilities. For

example, laboratory data transfers over a Wide-area network or Internet allow joint

AUV research over long distances. For another example, actual telemetry replay files
can be transferred from a moored AUV via modem or radio link for immediate remote

replay, analysis and verification. Such capabilities are particularly important when an

AUV is deployed at great distances from support laboratories and immediate analysis

of collected information is necessary.

G. IMPLEMENTATION, EVALUATION AND EXPERIMENTAL RESULTS

An integrated simulator has been implemented for the NPS AUV (Brutzman,92).

This section describes the primary components and key features of the NPS AUV

Integrated Simulator.

1. NPS AUV Vehicle Description and Sonar Characteristics

Naval officers and civilian scientists at NPS are conducting' active research

using an AUV designed and constructed at the school. The NPS AUV is used for

basic research and thesis work in control systems technology, artificial intelligence,

scientific visualization and systems integration. Specific NPS AUV project objectives

include the study of mission planning, navigation, collision avoidance, real-time

mission control, replanning, object recognition, vehicle dynamic motion control, and

post-mission data analysis (Healey 91) (Brutzman Compton 91).

32

The NPS AUY is ,eight feet, long and neutraly buoynyt, .displaing 387

pounds-with overall' size-and shape bonparable to-a small dolphin Curient vehicle,

endurance is -two to three hlours. Maximum speed of the NPS AUV is about tWo

knots. The NPS AUVYturning diameter is under three body lengths, designed:to be,

ideal for maneuvering in the large NPS sWimming pool. The NPS pool allow s,precise

testing in ,a quiet, controlled-environment. Open-ocean testing is feasible but is being.

reserved'for a more robust follow-on vehicle. Video clips showing normal NPS AUV

operation are available in'Orutzman, Floyd, Whalen 92) and (Brutzman-92).

The primary components of the NPS AUV are an aluminum hull, fiberglass

sonar dome, four high-frequency directional sonar transducers, twin counter-rotating

four-inch propellers, lead-acid batteries, eight plane surfaces, and a Gespac computer

running a Motorola 68030 processor with a 2 MB RAM card-under the OS-9 operating

system. Figure 3.7 shows a general schematic of the NPS AUV.

Four PSA-900 Programmable Sonar Altimeters made by Datasonics Inc. are

orthogonally- fixed in the nose of the NPS AUV pointing directly aheadi downward

and to port and starboard. These transducers are fixed frequency and ultrasonic, each

at approximately 200 Khz. Sonar range gate is selectable at 30 mior 300 m, and-pulse

length is 350 pts. Normalpulse repetition rate is 10 Hz. Sonar beamwidth is seven

degrees and range resolution is 1 cm at 30 in.

2. NPS AUV Integrated Simulator

The NPS AUV Integrated Simulator has been developed to support

NPS AUV research and demonstrate each of the concepts described in this paper

(Brutzman 92).

High-level NPS AUV software processes are initially developed and tested

on the Unix-based computer science department network. These processes can now be

ported, compiled, linked and loaded on a Gespac VME-bus 68020 or 68030

microprocessor running under the OS-9 operating system. Gespac microprocessors are

used both on the NPS AUV and on a separate networked laboratory AUV. The

laboratory AUV includes 68020 microprocessor and 1/0 cards, a monitor terminal,

33

12

13

114

8 1.~ SONAR TRAW10UCERSgH&2.PADDLE W999L SPVDSCR O

S. PATE GWPOS OSW RLL ItCN.a AN(3) RAl

6 ~ PROELER MATOR S ROOTO

12 *VERTICAL OVROSCOME (ROLL AND0 FITC9 ANGUIS)

4 TOOTM90 NuRL APM SWioa
4 FROPELLE3 £ 14. ISAR RUDDER (2)

1L ORCNA ROSCOPES

17. Fugs, POWSR SWICI. SATIXR CHARGING, AND
CONY'UilR COMMUNIZCATIONS PANEL

I$. ACCES$ NATCK
19. NICROCONFUTh AND ANALOG TO Dza:TAL/DIOITAL

TO ANALOG CARDS
2.T"RUSTER TROPELLER DAMI MARKO

2.TRUSTER TUBE
22. TRAUSTE2RMOUSING

23. CONTROL SURFACE SERVOMOTOR (9)

Figure 3.7 General schematic of Ni'S AUV to scale

Ethernet network connections and a networked IIBM-comnpatible support PC that

includes an 05-9 "C" language cross-compiler. The laboratory AUV also has

additional hardware card slots in order to test new hardware components and new

vehicle software.

Graphics simulation using the NPS AUV Integrated Simulator is just

beginning to be used for laboratory evaluation of software that will run in the AUV

34

proper. New hardware and software can be rapidly tested prior to installation and

operation in the NPS AUV, minimizing vehicle risk -while saving time and money.

Replays of actual data recorded by the NPS AUV can be used :for visualizati6n of

remote environments and detailed post-mission data analysis. Connection of software

development workstations with the NPS. AUV Integrated Simulator accelerates the

operational deployment of high-level mission software.

The NPS AUV Integrated Simulator control panel has been written using

NPS Panel Designer software, making it quickly modifiable and extendable

(King Prevatt 91). The graphic simulator user interface permits precise control of

viewpoint and reference point, lighting and rendering functions, object positions,

real-time mode, high-level object file recall, individual object control- and playback of

telemetry replay files. The NPS AUV IntegratedSimulator control panel is shown in

Figure 3.8..

Figure 3.8 Control panel for the NPS AUV Integrated Simulator

Because the AUV hull shape is similar to the original Swimmer Delivery

Vehicle used by U.S. Navy SEAL teams, a sophisticated mathematical model is

already available for simulator use to accurately recreate vehicle dynamic motion and

response characteristics (Jurewicz 90). The hydrodynamics model state equations

contain approximately 120 coefficients that continue to be improved and verified by

pool testing and ongoing thesis work.

In order to display a variety of sonar data, multiple objects can be displayed

on the graphics workstation. Implemented object primitives include AUV, point, line,

wall, mine and cylinder. These objects can be graphically displayed simultaneously

35

with original telemetry replay-data i order to analytically visuaie te validity and

usefulness of various Sonar classification techniques. Objects can be-independently

manipulated and positioned. An optional, time slot.for each object allows them to

appear only when appropriate during synchronized playback of telemetry files.

Additional advanced graphics techniques can quickly be added, to the baseline graphics

simulation program.

3. Silicon Graphics IRIS Workstation Capabilities

The NPS AUV Integrated Simulator uses a Silicon Graphics Inc.

Iris 4D/240VGX. This graphics workstation has 48 bit color, 24 bit Z-buffering and

four parallel 25 Mhz 20 MIPS processors that together can process 1 M vectors, 1.1 M

triangles or 180 K polygons per second (Gorey 91). Other slower IRIS workstations

are also available for use, including a remote workstation in the:Mechanical

Engineering Department adjacent to the NPS AUV support laboratory. All graphics

workstations are connected by local or wide area networks. Real-time playback of

telemetry data is automatically adjusted to take maximum advantage of the current

graphics workstation processing power, producing realistic screen displays regardless

of which model graphics workstation is used.

4. Laboratory AUV Simulation

A primary objective of integrated simulation is to run operational software

on a laboratory version of the AUV microprocessor. The NPS AUV Integrated

Simulator includes an identical Gespac computer running a Motorola 68030 under the

OS-9 operating system. Added to this computer are interface cards for a

VT220 monitor and keyboard for external control, serial connection to a PC, and

Ethernet connection to the NPS computer science department network. Full

connectivity is thus provided to all developmental workstations of interest as well as

the Campus Wide Network and Internet. Since OS-9 is a multiprocess real-time

system, multiple users can access the Gespac AUV microprocessor simultaneously.

Unmodified operational NPS AUV software is able to run successfully on

the laboratory AUV microprocessor, and telemetry data files are properly saved during

36

eachrn, Teleiietr'y data files' have bieen successfully- trasferred over the iietwork

and played'back on the Iris graphics workstation. Although missihg-NPs AU

hardware Such as sonar'and-,lane surface response hanot,,yet been simaulated

successful visualization of the laboratory test runs has proVen the feasibility of the

integrated-simulation approach. Functional AUV software ajd hardwareis'-now

directly available to all NPS AUV researchers forexperimentation and evaluation prior

to :in-water testing.

H. ADDITIONAL APPLICATIONS

Several applications were implemented concurrently with the NPS AUV

Integrated Simulator that successfully demonstrate the usefulness of integrated

simulation in support ofhigh-level AUV-related AI:research.

1. Sonar Classification Application

The-NPS AUV Sonar Classification System uses outputs from simple active

sonars to classify detected underwater objects (Brutzman Compton Kanayama 92)

(Brutzman 92). Figure 3.9 shows sample sonar classifications in the NPS pool

displayed using the NPS AUV Integrated Simulator. Scientific visualization

techniques permitted rapid and precise development of geometric analysis techniques

and classificetion heuristics, resulting in successful completion of the NPS AUV Sonar

Classification System.

37

Figure 3.9 Integrated simulator screen display of the NPS pool, AUV track
and all active sonar classifications

2. Circle World Path Planning Application

Optimal path planning is an important area of AUV research. Displaying

and viewing paths and obstacles without restrictions allows the algorithm designer to

evaluate his results in the most comprehensive and challenging manner possible.

Additionally, subtle difficulties that might be obscured by two-dimensional projections

are clearer and easier to evaluate when shown in three-dimensions. A circle world

path planner has been developed that finds shortest paths around circular or cylindrical

obstacles (Brutzman 92). Figure 3.10 shows how shortest path planning results can be

portrayed in three dimensions using the NPS AUV Integrated Simulator.

Figure 3.10 Integrated simulator three-dimensional representation of circle
world obstacles and shortest path in the NPS pool

38

3. Minefield SearchAppliation

Another application benefiting from integrated simulationisan AUV

minefield search planner (Compton 92). A three-dimensional open-ocean minefield

model is optimally searched and mapped using a dynamic search strategy. AUV

search track and vehicle posture are recorded'in a simplified telemetry replay file,

while, waypoint objectives and detected mines are recorded in a separate high-level

object file. Synchronized playback of these files allows complete visualization of the

complex path taken by the AUV as well as the numerous objects detected, shown in

Figure 3.11. Note that vehicle track is much easier to visualize than in Figure 3.4,

particularly since the simulator user's viewpoint can be panned over and around the

track data.

Figure 3.11 Integrated simulation display of AUV minefield search

L ADDITIONAL APPLICABILITY, LIMITATIONS AND FUTURE WORK

1. Comparison of Theoretical and Empirical Data

Three-dimensional visualization techniques are well suited for making

meaningful comparisons between large abstract data sets. Such comparisons can

significantly aid the operator in evaluating small errors in mathematical models or

system control software. For example, predicted vehicle track for a given control

39

systems algorithm could be spatially !superimposed over actual -test track data.

Coefficients in the prediction model can then be incrementally adjusted until

theoretical behavior matches actual performance. A similar visualization appr0ach was

used with great success while determining precise heuristics for objecltclassification

using recorded active sonar data (Brutzman Compton Kanayama 92) (Bmtzman 92).

Direct comparison of theoretical and empirical data is a powerful diagnostic tool that

can be used to improve theoretical formulations as well as vehicle implementations.

2. Limitations to Integrated Simulation

The primary limitation on integrated simulation realism is graphics

workstation speed and capability. Many graphics workstations can generate

photorealistic images but are unable to rapidly reproduce a series of images in real

time. The competing requirements between rendering accuracy and adequate frame

rate will always require design tradeoffs by the graphics programmer. Silicon

Graphics Inc. workstations use the GL Graphics Library, which is a good graphics

programming choice due to the numerous graphics techniques provided, code

optimization, portability to other platforms and open licensing availability. Graphics

workstation capabilities are probably the most critical consideration in integrated

simulator design.

The local area network (LAN) used to connect integrated simulator nodes

should be reliable, have adequate throughput and allow addition or removal of nodes

with little difficulty. Ethernet-based LANs are adequate for NPS AUV Integrated

Simulator requirements and also provide gateway connectivity to Internet. It should be

noted that under most network protocols socket stream packet delivery order is not

guaranteed and timing of packet delivery is somewhat unpredictable. Processes that

use socket stream data should be flexible and not tied to hard real-time requirements.

Computer security is a consideration if sensor data or mission software is

proprietary or classified. The use of plain text for telemetry replay files and high-level

object files permits the use of encryption protocols during transfer. Encrypting files is

a simple technique that imposes minimal processing overhead. Individual nodes on

40

the integrated simulator network will require standard security precautions against

unauthorized remote access.

3. Future Use of Integrated Simulation

Integrated simulation provides development benefits to allctypes of remote

vehicles, regardless of whether a communications tether is present or remote control

by human operators is required. Integrated simulation not only solves a number of the

problems that degrade robot implementation, but also provides tools to work on

practical system engineering and integration problems that previously Were too

difficult to address. The authors hope that widespread incorporation of integrated

simulation techniques will improve the accessibility, intelligibility and progress rate of

mobile robot research.

J. CONCLUSIONS

Integrated simulation allows all AUV systems to be tested in a timely and

complete manner. The flexibility and connectivity provided by this approach enables

sophisticated visualization and complete analysis of all aspects of AUV development.

Integrated simulator networking is recommended as a fundamental requirement for

comprehensive and rapid AUV research and development.

41

IV. NPS AUV INTEGRATED SIMULATOR DESIGN SPECIFICATIONS-

This chapter provides details aboutdesign specifications particular to'ihe

NPS AUV and the NPS AUV Integrated Simulator. Specifications must include both

vehicle and'integrated simulator requirements for compatibility. Users and

programmers need to comply with or formally improve design specifications in order

to maintain forward and backward compatibility throughout the effective lifetime of

the-NPS AUV research project. A valid and effective datadictionary defined in

(Floyd 91) is used for all data types defined in this thesis.

A. NPS AUV ACTIVE SONAR SYSTEM

The current NPS AUV active sonar uses four ultrasonic directional beams

pointed ahead, down and 900 to port and starboard. Individual transducers are

mounted on adjustable semicircular frames that can allow all beams to be directed

forward. However the dimensions of the NPS pool and the 30 m range gate of the

transducers make orthogonally oriented transducers an optimal approach for sensing

multiple walls and targets simultaneously (Figure 4.1). The NPS AUV active sonar

characteristics are further described in Chapter VI and (Floyd 91).

Several problems have handicapped NPS AUV sonar performance. Faults in the

signal processing electronics have prevented simultaneous utilization of multiple sonar

transducers. Automatic averaging of sonar ranges at the board level has introduced

minor range errors and reduced the discrimination capability of the transducers against

small targets. The strongly reflective walls and shallow depth of the NPS pool create

a high reverberation environment. Despite these significant difficulties, adequate sonar

classification results have been obtained inside the NPS pool.

In a real sense, the independence and capabilities of any mobile robot (or even

manned submarine) are constrained by the quantity and quality of sensor data available

about the external world. Correction of current NPS AUV sonar limitations is

essential if more accurate vehicle control and higher level behaviors are to be achieved.

42

0)
Q)
Jco

00
cc. 0 CO

coc

Co CO

Figure 4.1 Ni'S AUV' sonar beam Profiles in the Ni'S pool

43

B. NPS POOL COORDINATE SYSTEM

Several theses have graphically modeled the NPS swimming pool or utilized

AUV data collected in the NPS pool. Unfortunately most of these efforts are

incompatible because no standard pool coordinate system has been established. In

order for test results to be understandable and repeatable throughout the life-of~the

NPS AUV program, a standardized NPS Pool Coordinate System is defined here.

Numerous competing criteria were resolved when defining this coordinate

system, especially differences between coordinate systems used by graphics simulation

programs. Advantages of the NPS Pool Coordinate System are as follows:

• all pool coordinates positive and units in feet

* surface depth z equals zero, increasing depth corresponds to increasing z
(indicated on diagram by tail of z-axis arrow)

• NPS AUV data file coordinates become standardized for readability and
future reference

• vehicle position and posture terminology are standardized

• right-hand rule relationship between all three axes maintained

• compatible with vehicle coordinate system and Euler angle definitions

• typical start points and normal operator's perspective are near pool origin

* AUV reference point between center of gravity and center of buoyancy

• angle orientations and coordinate positions are directly compatible with the most
prevalent robotics conventions, Dr. Kanayama's spatial reasoning function
definitions and standard "C" language trigonometric function calls

• vehicle headings are measured in clockwise direction as are conventional
compass headings that are familiar to naval officers

• NPS Pool Coordinate System simultaneously combines Cartesian coordinate
plane characteristics, Euler angles and right-hand rule, advantages that are not
possible with any other spatial representation

Disadvantages of this coordinate system are as follows:

• similarity to Cartesian plane is only evident from a perspective looking up to the
pool surface from below, thus axis orientations may initially be counterintuitive

The NPS Pool Coordinate System is shown in Figure 4.2.

44

4 shallow end 4 N

E

ml-
C

o
00

0

0

CO
CL
z

Figure 4.2 NPS Pool Coordinate System

45

C. NPS AUV TELEMETRY REPLAY FILE FORMAT

Telemetry replay files are a critical component ofsan-integrated simulator. These

files are used to record in-water test data as well as portray- expected Vehicle behavior

from offline simulation programs. Numerous variant formats exist for NPS Auv

telemetry replay files recorded to date. This variability leads to confusion and

incompatibility that worsens as an ever-growing number of unique telemetry replay

files become available.

The primary reason behind the current plethora of telemetry data file formats is

that different NPS AUV evaluation runs tend to test different hardware or software

components. Different tests have correspondingly different data logging requirements.

A telemetry replay file format standard has to be flexible to support varying data

logging requirements. The current NPS AUV telemetry replay file format is defined

in Figure 4.3.

NPS AUV telemetry is recorded at a 10 Hz data rate, allowing precise

measurements of varying position, posture and sonar values. A single wildcard data

slot can take advantage of this rapid update rate to allow recording of multiple test

parameters. For example, suppose a special test needed to record both left and right

commanded motor RPM. Alternate wildcard slots can be used for the two parameters

and a 5 Hz data logging rate for each is maintained. Another method might record

three 3-digit numbers by multiplying each by an appropriate powers of ten. For

example, the numbers 200, 300 and 400 can be saved as the single wildcard slot value

"200,300,400.00", permitting three parameters to be logged at the full 10 Hz data rate.

Thus this newly standardized telemetry replay file format has built-in flexibility to

allow compatible recording of variable data logging requirements.

46

Telemeuytrack data:entries are uniquely identified by time value

<time> = REAL ; time of sonar ping

<x>, <y>, <z> = REAL ; AUV position at time of ping

<4)>, <0>, <Vi> = REAL ; roll, elevation, azimuth angles
;,vehicle posture at time of ping

<p>, <q>, <r> = REAL ; vehicle posture angular, rates of change
; from navigational gyros

<A dive> = REAL ; Ordered dive plane angle

<A rudder> = REAL ; Ordered rudder plane angle

<rangel> = REAL ; Forward transducer range

<range2> = REAL ; Left transducer range

<range3> = REAL ; Right transducer range

<range4> = REAL ; Depth transducer range

<speed> = REAL ; output from paddlewheel sensor

<wildcard: + = REAL ; available for user-defined data logging

Figure 4.3 NPS AUV telemetry replay data file format specification

D. SOFTWARE PROCESS SPECIFICATIONS

Numerous mutually-dependent processes are necessary for an AUV to have

adequate capabilities to perform independent missions. Software module specifications

need to be standardized and clearly defined in a large multi-year multi-programmer

project such as the NPS AUV. Figure 4.4 is a sample format that can be used to

record individual process specifications so that NPS AUV programming group

members are able to provide proper process inputs and outputs. A group commitment

47

to defining, following, and updating formal specifications is essenfiab for reliable

process interaction. Failure to followformal specifications Willinevitbly lead to loss

of reliability, mission failure and probable vehicle loss'.

E. CO CLUSIONS '

Many software modules have been written for eventual use by the NPS AUV:but

Very few have been implemented and used on the Vehicle. This chapter has ,presented

design specifications and basic software engineering considerations for the NPS AUV

that are essential for compatible operation of the NPS AUV Integrated Simulator.

Numerous additional requirements have yet to be formally evaluated. A cohesive

software engineering approach is needed to formally define system software

architecture, process specifications, process data requirements, standardization of

process outputs and software version control. Failure to address these requirements

will handicap group research andprevent full implementation of NPS AUV mission

software.

48

NPS AUV Software Process Name

* Process Short, Desciption

Functional Specifications

QInPUts

Timing and Periodicity Constraints

Software Process Interfaces

References ahd Additional Information

Individuals Assigned

Figure 4.4 NPS AUV software process summary sheet

49

V. NPS AUV INTEGRATED SIMULATOR DATA NETWORK

A. INTEGRATED SIMULATORDATA NETWORK OBJECTIVES

The purpose of the NPS AUV Integrated Simulator data network is to cbninect

all workstation and personal computer nodes with the NPS AUV and laboratory AUV

microprocessors. This has been- accomplished by connecting several local area

networks with a wide area network and then adding modems for additional long

distance connectivity. This chapter describes how network protocols were chosen and

network connections are implemented to support the NPS AUV Integrated Simulator.

B. NETWORK CONNECTIVITY REQUIREMENTS AND ETHERNET

The NPS AUV project has already supported thesis work for dozens of graduate

students and will coninue-to be active for the foreseeable future. The -NPS AUV

Integrated Simulator data network is designed to maximize accessibility to NPS AUV

hardware and software. Network connectivity objectives must address many

requirements including compatibility, flexibility, cost-effectiveness, portability,

maintainability, future growth potential and ability to upgrade. These criteria are all

dependent upon the type of network protocol chosen.

Ethernet is the primary local area network protocol used at NPS. Ethernet is

used for the Computer Science Department network in Spanagel Hall and for the NPS

Campus-Wide Network. Ethernet is a broadcast bus network with a data transfer

capacity of 10 M bps. It is a broadcast network because all transceivers receive every

transmission and a bus network because all nodes are joined by a common

communications channel. Bridge boxes are used to connect various departmental local

area networks to the Campus-Wide Network. These bridges screen unnecessary traffic

from transmission to adjacent networks, and also pass copied packets of interest

without reproduction of noise or packet collisions.

50

Protocols describe tnethods of passing messages, formattng data adnhandling

errorconditions. TCP/IP (Transmission Control Protocol/internet Protocol) is.te

officialI name, of the Internet Protocol Suite used'by Ethemet. Etheriet and' TCPIP

include the protocols used t6 pass files or data-packets between'nodes. FTP (File

Transfer Protocol) is a speificmeansof file transfer that-can be used under both Unix

and OS-9 operating, systems to~transferfiles between NPS AUV processes and. the

graphics simulation workstationi

Individual nodes connected to Ethernet have unique physical addresses. Because

the NPS local area networks are also connected to the Internet, added nodes receive

independent Internet addresses. The Internet is-a national network connecting

thousands of government, corporate and university computer networks. Internet

includes links to all other major national and international networks., Utilizing

off-the-shelf Ethernet technology for the NPS AUV Integrated Simulatoris desirable

since it allows complete compatibility with existing NPS networks as well-as

accessibility via the Internet.

Bandwidth is a critical consideration when choosing a network protocol. Large

amounts of data are required for NPS AUV Integrated Simulator playback of vehicle

performance, and numerous message outputs from many software processes may be

required to adequately evaluate AUV mission execution. The network and protocol

chosen must be capable of transmitting data at a rate adequate to support real-time

playback and simulation. The data transfer mechanisms defined in Chapters III and IV

contribute to efficient communication by concisely representing comprehensive vehicle

state information. Current experience with interactive simulation programs (Ong 90)

(Jurewicz 90) have shown that, under normal network usage rates, the Ethernet

10 M bps channel capacity is adequate to meet NPS AUV Integrated Simulator data

transfer bandwidth requirements. Ethernet is therefore a good choice for the

NPS AUV Integrated Simulator Data Network since most network connections were

originally in place and network bandwidth is adequate to support simulation

requirements.

51

The NPS AUV project may eventually need a special long distance connection

to a proposed remote AUV laboratory inBuilding 230 at the NPS Golf Course.

Building 230 is approximately 1.3 milesfrom Spanagel Hall, a distance that falls

within the nominal 1.7 mile maximum range for an Ethernet network. However

stringing Ethernet.cable and repeaters along public roads to the golf course is

obviously not feasible. Several options are available to maintain NPS AUV Data

Network connectivity with a remote site such as Building 230. A leased high-speed

phone line and additional interface equipment might be used to exchange real-time lab

data with the Campus-Wide Network. In support of long-term research the

Building 230 laboratory can be made an independent Internet node that includes both

the NPS AUV and a local graphics workstation. Finally, a standard phone line and a

modem connection can be used for file transfer to the Computer Science Department

network as is already possible during pool testing. It is interesting to consider that

standard telephone connections can also be used-to communicate with the NPS AUV

at other remote locations such as the Monterey Bay Aquarium, Navy laboratories or a

coastal launch site.

Other network configurations and data link methods were also considered but

deemed inappropriate. Direct customized serial or parallel port interfaces between an

Iris graphics workstation and a laboratory AUV Gespac are possible but implementing

such parts is expensive, time-consuming and incompatible with other networked

computer systems at NPS. Such a customized communication setup also risks

becoming obsolete if any of the current vehicle hardware is changed or upgraded.

Direct port-to-port communication links also prevent linking multiple independent

software processes running on an AUV microprocessor and the computer science

network. Non-Ethernet network topologies such as token-ring or Fiber Distributed

Data Interface (FDDI) were rejected for similar reasons.

A direct Ethernet connection inside the actual NPS AUV is operationally

undesirable due to space and power consumption requirements. However addition of

an optional Ethernet card to be used when the NPS AUV is in the laboratory provides

52

a high data transfer channel bandwidth (10 M bps) and -improved7 pseudo-mission

testing response. Actual AUV system reconfiguration to include the Ethernet card is

not a problem since that is the normal configuration of the standalone laboratory AUV

microprocessor.

C. NETWORK HARDWARE REQUIREMENTS

Numerous components are connected to form the NPS AUV Integrated

Simulator data network, shown in Figure 5.1. Most network connections were already

available at the start of this thesis. Notable construction work performed included

assembly of the laboratory AUV Gespac and support equipment (node auvsiml) as

well as the support laptop (node auvsim2) and the support PC (unconnected node

auvsim3). The pertinent portions of the NPS Computer Science Department network

are shown in Figures 5.2 and 5.3, and the NPS Campus-Wide Network is shown in

Figure 5.4.

The most challenging task in the development of the NPS AUV Integrated

Simulator data network was to build i laboratory AUV. An additional Gespac

microprocessor identical to the NPS AUV Gespac microprocessor was purchased for

simulation use. A VME-bus backplane cage containing a Gespac microprocessor,

input/output channels and an Ethernet interface card was installed inside a cannibalized

workstation box. A second backplane cage was combined with the first to provide

extra capacity for evaluating additional cards prior to installation on the actual

NPS AUV. A pair of monitor and keyboard hookups were connected to communicate

with the microprocessor. The laboratory AUV was installed adjacent to the graphics

simulation workstations, since the laboratory Gespac microprocessor and support

terminals need to be directly visible from the simulation workstations for efficient

testing and troubleshooting. This also made the lab AUV accessible to the local area

network ethernet cable. The support PC includes an OS-9 "C" language

cross-compiler which produces GESPAC 68020/68030 object code.

53

NPS AUV- INTEGRATED SIMULATOR NETWORK

Lab AUV Gespac

Id, SGraphics Lab Ethernet

__ I -CS Dept Unix Ethernet

U - campus-Wide Network

U=Z ME Dept DecNet

NPS AUV Gespac

Figure 5.1 NPS AUV Integrated Simulator data network

54

Main, Servers/ Subnets/

Ethernet Standalones Clients

1.x

I +----------
+---------- boxi +--+ Departmental modemns

I +--thru--+ I
+---------- box4 +--+->> telephone system

I +----------

I +---------- Departmental file servers
------- --- + virgo I

I ----------
+---------- suns2 'I Taurus is name server,
I ---------- mail/news host & gateway

+---------- taurus ---
I-----+---------- to Campus-Wide Network 254.x
------ +libra I

I +---------- Graphics Lab
+---------- gravyl I
I +---------- Silicon Graphics workstations
+ + gravy3 I
I +--thru--+
+ + gravy5 I+

I---------- + auvsim3 +
IPCBRIDGE + 286 desktop +

I -==+--------------------+

+---------- auvsiml I serial port
I + Lab Gespac I

I +-----------------+

I131.120.1.40 serial port + vt220 +
I + 03-9 terminal +

+< ---- auvsim2 I----------- > telephone system
I + 386 laptop I modem
I+== = == = =+
I 131.120.1.46

V

Figure 5.2 NPS Computer Science Department Network portion of
NPS AUV Integrated Simulator data network (part 1)

55

V

i Artificial Intelligence Lab

7.x+ ------- +
S----------+ +--+ ailo I
---------- ai9 +-------+ +-thru--+
S+---------- +--+ail2 i

i ---------- 5.x -------- Academic Computing
---------- gemini +--+--+ acl + Lab
I ---------- I +-thru-+
+ +--+ acl8 +

--------- numerous other nodes
--------- not included here

1.x

Figure 5.3 NPS Computer Science Department Network portion of
NPS AUV Integrated Simulator data- network (part 2)

The laboratory Gespac microprocessor is configured almost identically to the

NPS AUV Gespac in order to allow realistic and thorough simulation. The laboratory

Gespac differs from the actual NPS AUV Gespac by having an Ethernet card

connection to the Computer Science Department network and serial port connections

to a VT-220 terminal and a support PC. Care has been taken to preserve physical and

functional equivalence between laboratory and NPS AUV Gespac microprocessors.

The current laboratory AUV card cage configurations is shown in Figure 5.5.

The Gespac 68020/68030 microprocessor running OS-9 requires Erasable

Programmable Read-Only Memory (EPROM) modifications for permanent

configuration changes. However any desired operation can be performed without

performing tedious a EPROM change because system drivers can be added as needed

from the OS-9 command line. The current network configuration of the laboratory

Gespac microprocessor will allow development and implementation of communications

sockets to pass data packets for real-time simulator display.

56

NNf Duy Knox Library
NSFNBT DDN

HInHa
M7

!Q

Hallon Hall
DEcNBT Network computer science

- UV 4 nsuat

.G.p.I W/S
-Portablo LA"tptudl

mpnavymi

....... pSCampus-Wide Network He nn
Backbone Hal

Bullard
HallTrnCae

- Thin Cable

...... • t P
Computer Sciam Dvastmeat Network

csnpmuw

Spanagel Hail =........ [3

Figure 5.4 NPS Campus-Wide Network

57

1 Gespac 68020 or 68030 Microprocessor
runningOS&-9 r6al-time multitaskling operating system ,

2 Multifunction Interface Card
2 serial ports, 2 parallel ports, cl9ck/calendar, etc.

3 Floppy Disk Controller

4 Hard Disk Controller

5 Ethernet Interface Card

6

7

8 386 Microprocessor
with IDE controller circuitry (OS-9 compatibility untested)

1 Additional card slots available for future growth,

2 new equipment evaluation and hardware troubleshooting

3

4

5

6

7

8

Figure 5.5 Laboratory AUV microprocessor card cage slots

58

Prior to implementation of the NPS AUV Integrated Simulator data network, the

Mechanical Engineering Department network was not connected to any external

network. A special interface board waspurchased and installed during 1991 that

linked their DECNET-based system to the Campus-Wide Network backbone. cable

running through Halligan Hall. Another Iris graphics workstation is also on this local

area network, permitting local execution of graphic simulation as part of the overall

NPS AUV Integrated Simulator. Another laboratory Gespac is also available in

Halligan Hall. Each of these nodes can now be networked to take advantage of the

many benefits of integrated simulation.

D. OPERATING SYSTEM INTERFACES

The Computer Science Department network uses the Unix operating system.

Although different versions of Unix can coexist on subnetworks connected to the

departmental network, each is compatibly connected using Ethernet and Internet

TCP/IP protocols. Further capability can be provided by socket interface software that

allows application programs to directly access communication protocols via the

operating system. Sockets for interprocess and intermachine communication have been

written and implemented under Unix (Barrow 88) (Ong 90). The Gespac OS-9

operating system also supports Ethernet and TCP/IP protocols but further work is

needed to implement software sockets under the Gespac OS-9 operating system.

Complex simulator testing of the NPS AUV may someday be based on real-time

data transfer between AUV software processes and the integrated simulator.

NPS AUV software processes have two possible operating environments: simulated

developmental testing under the Unix operating system or operational execution under

the OS-9 operating system on a Gespac microprocessor. Although file transfer is the

only data passing mechanism currently implemented, it is desirable to develop

real-time testing capabilities in both operating system environments by implementing

sockets to pass data packets. If data transfer between processes succeeds

independently of the NPS AUV under the developmental Unix environment, it is

59

reasonable to expect that the same software -processes will- still communicate properly

When ported to the NPS AUV's resident OS-9 operating system. Careful

implementation of data packet passing and network sockets- will ensure proper

portability of processes that employ sockets.

Use of ASCIItext files for mission logging makes encryption a simple matter if

increased security becomes necessary due to mission requirements. Encryption can be

performed prior to file transfer or during high-level object file message logging. Any

encryption routines used need to comply with the DoD Encryption Standard (DES) or

higher requirement. Encrypted output files need to remain in ASCII text format for

complete communications protocol compatibility.

E. CONCLUSIONS

Creating an NPS AUV Integrated Simulator Data Network by linking NPS AUV

hardware with graphics workstations will provide an exceptional tool for distributed

research, real-time simulation and end-to-end AUV system testing. Ethernet is the

appropriate local area network technology to use in order to ensure complete

compatibility with existing NPS networks. Ethernet and Internet connectivity ensures

that the NPS AUV Integrated Simulator data network completely supports all

NPS AUV research, development and testing. Further work remains to implement

TCP/IP protocol and software socket compatibility under the OS-9 operating system

running on the Gespac 68030 architecture.

Connection of the NPS AUV Integrated Simulator data network allows

preliminary evaluation of NPS AUV software changes to be performed prior to

in-water testing. Concurrent playback and data verification is now possible during

pool testing by transferring telemetry replay files over telephone lines during

NPS AUV test runs. Immediate problem diagnosis allows immediate correction and

repetition of test runs that result in corrupted, faulty or unusual data.

Additional work needs to be done on the NPS AUV Integrated Simulator data

network when modeling or simulating missing NPS AUV hardware in the graphics

60

lab. It is likely that some world models will- not fit on the, operation4l Gespac

requiring data packet communication with an ,offline worid model. The

laboratory AUV is an excellent testbedfor evaluating, new potential NPS AUV

physical components. Fiially, the data network has the growth potential to. support the

addition of analog NPS AUV hardware components, allowing the NPS AUV

Integrated Simulator to become a true digital and analog hybrid simulator.

61

VI. AUTONOMOUS SONAR CLASSIFICATION USING EXPERT SYSTEMS

A. ABSTRACT

An expert system can process active sonar returns, perform geometric analysis

and autonomously classify detected underwater objects. Autonomous classification of

objects is an essential requirement for independent operation-by autonomous

underwater vehicles (AUVs). Most AUVs are only capable of rudimentary sensor

analysis, since standard approaches to evaluation and classification of sonar data

require excessive signal- processing and computational power to be practical. This

chapter describes how to develop an autonomous sonar classification expert system for

a working AUV.

A fundamental approach is presented for applying geometric reasoning and

expert system heuristics to sonar classification. Preliminary sonar processing is

performed using parametric regression line fitting. A polyhedron-building algorithm

correlates the parametric regression line segments into geometric objects. After

quantifying geometric object attributes, objects are classified using rule-based

evaluation of quantitative and qualitative attributes combined with sonar classification

heuristics.

A summary of expert systems describes their salient features pertinent to

autonomous sonar classification systems. The expert system paradigm, knowledge

representation, reasoning using facts and rules, rule sets, control of execution flow and

expert system development are outlined. Expert system self-diagnosis and

self-correction also discussed.

Implementation was performed using the "C" Language Integrated Production

System (CLIPS) expert system shell. Real-time graphic simulation and scientific

visualization are employed to evaluate results. Experimental sonar classification

results are presented using actual mission data from the Naval Postgraduate School

62

(NPS).AUV. Successful, classifications of Walls.and a mine-like object are,

demonstrated.,

B; INTRODUCTION

Intelligent vehicles will play a major role in future underwater missions. A

critical requirement for independent behavior by such vehicles is autonomous analysis

of complex and variable ocean environments. This is-a notoriously difficult task, even

when human operators use sophisticated sensors and powerful processors.

Although much work has-been done in vision processing for mobile robots,

additional research has been needed on interpretation of observed scenes, and terrain

(Hebert 88). Numerous approaches to the general object-recognition problem are

presented in (Besl 85). Both of these references can be found in (Iyengar 91), an

essential collection of surveys, tutorials and fundamental research papers regarding

mobile robot sensor perception, mapping and navigation. Other references included in

(Iyengar 91) are (Luo 89) and (Moravec 83).

Independent and meaningful interpretation of sensor data is a principal

prerequisite for accomplishing high-level AUV missions and behaviors. A number of

universities and laboratories are conducting autonomous underwater vehicle (AUV)

research and development that involves a wide variety of sensor types and sensor

interpretation methods. The Defense Advanced Research Projects Agency (DARPA)

Unmanned Undersea Vehicle (UUV) uses sidescan sonar and neural network

classification for underwater mine detection (Pappas 91). Woods Hole Oceanographic

Institution has used sidescan sonar, stochastic backprojection and a variety of vision

processing techniques and sea floor shape information to create three-dimensional

bottom images (Stewart 89). The University of New Hampshire Experimental

Autonomous Vehicle (EAVE) III uses depth profiling, acoustic long baseline

navigation and comparison with a world model to detect bottom objects (Blidberg 90).

Numerous other examples of sensor data interpretation exist. In contrast to most

methods, this sonar classification system uses parametric regression, geometric analysis

63

and expert system heuristics to create classifiable .bject types. An advantage of this

method is that progressively higher leVels of object abstraction arepossible.

C.. OVERVIEW

The objective of this chapter is to present a method for autonomous

classification of underwater objects. This is achieved using geometric sonar -analysis

techniques and an expert system for heuristic reasoning.

This researcheffective1y demonstrates that geometric analysis can be combined

with an expert system to process, analyze and classify active sonar range and bearing

data in support of AUV operations. Figure 6.1 shows how low-level sonar data is

processed to produce increasingly complex geometric objects and high-level

classification outputs.

Geometric analysis can distill large amounts of sonar data into useful

information that can be used to make logical and informed decisions. The primary

difficulty in geometric sonar analysis is that active sonar signal returns are inherently

noisy and unconnected. Parametric regression is a robust method of least-squares line

fitting that permits precise geometric analysis of range and bearing data (Floyd 91).

Generated regression lines are provided to a polyhedron-building algorithm to create

geometric objects. Geometric object attributes can then be compared to known object

types through the rule-based pattern-matching capabilities of an expert system,

resulting in object classification.

The possible types of object classes to be detected are typically limited in

number and somewhat predictable given a priori knowledge of the underwater

environment. Geographic objects to be detected and classified include the ocean

bottom, sea mountains, valleys, rock outcroppings and walls. Biological objects

include fish, kelp, scuba divers and large animals such as dolphin or whales.

Man-made objects include ships, submarines, torpedoes, mines, nets, pipes and cables.

These object classes of interest are listed in Table I. The relatively small number of

underwater objects of interest simplifies sonar classification criteria. Primary expert

64

Sonar Range and Bearing Inputs

Extract Line Segments
using Parametric Regression

Build Polyhedron
from Line, Segments

[Quantify Polyhedron Attributes

I Pattern-match Classification

Classified Object Output
Figure 6.1 Autonomous sonar classification process diagram

system outputs are location, size, and classification of all sonar contacts.

Expert systems are an established methodology that can effectively and clearly

represent specialized human knowledge using algorithms and heuristic rules. Typically

the functions performed by an expert system might otherwise require human action by

a knowledgeable expert. The expert system approach is applicable to a wide variety

of complex problems, even when no single expert understands all aspects of a

particular problem domain.

65

Table VI.J EXAMPLE UNDERWATER OBJECT CLASSIFICATION
TYPES

Geographic Biological Manmade

Ocean bottom Fish Ship

Sea mountain Kelp Submarine

Valley Scuba diver Mine

Rock outcropping Dolphin Torpedo

Wall Whale Net

Sea surface Shark Pipe or cable

Unknown

The use of real world data is important for development and verification of a

sonar c!assification expert system. Naval Postgraduate School (NPS) students and

faculty have designed and built a working AUV that can be used to provide a variety

of classifiable sonar data. Successful examples of expert system classifications using

NPS AUV sonar data are described in detail.

The expert system approach also appears to be usable for sensor fusion using a

wide variety of sonar types as well as non-acoustic sensors such as laser rangefinders

and video. Many excitinj; future applications are possible using expert system

methods.

D. GEOMETRIC ANALYSIS OF SONAR DATA

1. General Characteristics of Active Sonar Data

Outputs common to practically all active sonars are range and bearing from

the sonar transducer to a contact, if any is detected. Posture of an underwater vehicle

includes a three-dimensional position coordinate, as well as vehicle attitude consisting

of roll, elevation and azimuth orientations. The relative position of each sonar return

is combined with vehicle posture using vector a;dition to yield a precise

66

three-dimensional coordinate. In this chapter the term "sonar data" refers to

simultaneous sonar range and bearing data returned from an active sonar transmission.

2. Geometric Primitives and Object Attribute Definitions

Sonar data can be analyzed to produce geometric forms such as points,

lines or polyhedra. Precise definitions of geometric primitives and object attributes are

necessary for predictable and repeatable sonar classifier performance. It is important

that the theoretical basis of a sonar classification expert system be both mathematically

rigorous and as general as possible in order to allow increasingly sophisticated analysis

of data. A formal geometry-based approach also permits expert system compatibility

with a wide variety of sonar types.

The geometric primitives considered by this expert system are point, line

segment, polyhedron and cylindrical polyhedron (i.e. a three-dimensional polyhedron

that extends vertically up and down from a planar polygon perimeter). Object

attributes include centroid position, depth, length, width, height, perimeter,

cross-sectional area, thinness, and volume. Indirect attributes such as positional

accuracy, confidence factor, inferred edges and hidden edges are also evaluated.

Additional geometric primitives and object attributes can be defined as

necessary to utilize the more sophisticated data available from sector scanning,

two-dimensional swath or three-dimensional multi-beam sonars. Similar approaches

using curved shapes such as circles, ellipses or conics (Moravec 83) are also

compatible.

3. Extracting Line Segments using Parametric Regression

Linear relationships described by sets of discrete data are typically found

using standard linear regression analysis, commonly known as least-squares fit. This

method is widely used but has a significant limitation in that regression calculations on

(x,y) coordinate points parallel to the y-axis result in divide-by-zero singularities for

slope and mathematically undefined regression results. Since typical unconstrained

sonar data may lie along any three-dimensional orientation, a different method is

67

needed for autonomous fitting of best-approximation line segments to a series of

discrete sonar returns.

The parametric regression method utilizes a polar. coordinate derivation of

linear regression analysis to provide a robust and accurate least-squares fit-of line

segments to sequences of data points. This method has been developed in detail and

is particularly well suited for geometric analysis of real-world sonar data

(Kanayama 89) (Kanayama 90) (Floyd, Kanayama, Magrino 91) (Floyd 91).

Associated with each regression line segment is an elliptical thinness term that can be

used as a metric for line segment accuracy and data variance. Figure 6.2 shows a

typical parametric regression line segment fit to a set of sonar returns.

0

00

/ 0

sonar parametric regression line
returns

Figure 6.2 Typical parametric regression line fit

A further significant benefit of parametric regression analysis is that it is a

sequential algorithm which provides immediate incremental improvements upon receipt

of each individual data point. The sequential nature of this algorithm makes it highly

suited for real-time operations that must meet immediate response requirements.

Real-time vehicles cannot afford to wait for intermittently time-consuming sonar

analysis when excessive delay might jeopardize navigational safety.

4. Building a Polyhedron from Line Segments

Parametric regression provides linear one-dimensional geometric primitives.

However line s' gments by themselves are insufficient for thorough two-dimensional

spatial reasoning or object classification. A polyhedron-building algorithm is

presented here as a means of constructing two-dimensional geometric objects from a

68

sequence of regression line segments. In this context the polyhedron-building

algorithm is a logical extension to the parametric regression algorithm.

One important assumption used when building polyhedra is that underwater

contacts of interest have predominantly convex shapes, i.e.they contain no-large

concave depressions or cavities. This assumption permits clear delineation of

independent object boundaries. Analysis of an actual concave object results in the

definition of adjacent convex objects. Higher-level analysis at the heuristic level can

be used to clump adjacent objects if needed.

Note that the orientation of vehicle sonar relative to detected objects is a

critical consideration in the polyhedron building algorithm, since spatial relationships

are equally dependent on sensor perspective and actual object shape.

Polyhedron building begins with a single line segment produced by

parametric regression analysis of continuous sonar data. Each following segment from

regression analysis on the same sensor is compared to the previous segment. If the

follow-on segment meets proximity and orientation criteria, then it is considered to be

another part of the same geometric object. This segment comparison process is

repeated until proximity or orientation criteria fail, at which time the previous

geometric object is complete and the follow-on segment becomes the beginning

segment of a new geometric object.

Proximity is measured between the end point of the most recently

correlated line segment and the start point of the next segment to be considered. The

proximity criterion is typically small and restrictive (e.g. less than 1 foot) in order to

permit discrimination between adjacent objects. The proximity criterion must be met

prior to comparing relative orientation for geometric object extension.

Orientation comparisons are made to determine whether adjacent segments

are colinear, convex or concave. The colinear test allows a reasonable error bound

(e.g. ±10*) in order to account for sonar noise and line-fitting approximations.

Colinear segments are acceptable for geometric object extension (Figure 6.3).

69

...

Figure 6.3 Examples of colinear regression line segments

The convex test measures whether the follow-on segment direction points

farther away from the sensor's perspective than the previous segment. Convex

segments are also acceptable for geometric object extension (Figure 6.4).

.......I... ... 1... I...... g p

Figure 6.4 Examples of convex regression line segments

The concave test measures whether the follow-on segment direction points

closer towards the sensor's perspective than the previous segment, in effect defining

the boundaries of a hole. Concave line segment relative orientations indicate a break

between separate convex geometric objects (Figure 6.5). The follow-on segment is

used to start a new polyhedron.

Inferred edges are presumed to exist between each pair of the sequential

detected edges that make up a polyhedron. A single hidden edge is presumed to exist

betweep the start point and end point of a particular object. The classifier must

recognize, however, that such hidden edges may be completely inaccurate since the

actual hidden sides of the object were obscured from the sonar.

70

, \ //

Figure 6.5 Examples of concave regression line segments

In summary, the polyhedron-building algorithm correlates regression line

segments into two-dimensional polyhedral objects. This method enables the

application of computational geometry techniques to analyze large volumes of discrete

range and bearing data. Figure 6.6 illustrates the polyhedron-building algorithm.

5. Quantifying Polyhedron Attributes

The attributes that are used to classify objects need to be precisely defined

and calculated, wherever possible. For example, attributes such as depth, length, width

and height are directly measurable using calculated sonar positions. Object perimeter

can be determined by first summing the lengths of all correlated line segments, and

then adding the lengths of all inferred and hidden edges that are presumed to exist

between detected edges. Figure 6.7 shows how the start point, regression line

segments, inferred edges and hidden edge that make up a polyhedron cross-section

define a series of triangular areas.

Area of a single triangle is given by Equation (6.1).

1AreaA =2[(X2-X 1)(Y 3-Y 1) - (X3-X1)(Y2-Y)](6.1)

Polyhedron cross-sectional area is determined by summing the area of these

triangles, given by Equation (6.2).

71

iT

Get line segme t
Start new polyhe#on,

mot " e NO Terminate
Se polyhedron

YM calculate
Get next Attributes
adjacent

line segment WD

Test PAM Terminate polyhedrCM
Pro Detemine bidden edge

Calculate attributes
Latest segment star's

PASS now jolyhedron

Add segment to PAu Test
polyhedron Colinear

Determine WWI
inferred edge FAJL

PMS Test PAL

Convex (concave cdenti0n)

Figure 6.6 Algorithm to build polyhedra from "ne segments

72

end point,

- regresion line semnt
Infered edge

Figure 6.7 Summing triangle areas to determine polyhedron cross-sectional
area

Ara,, = , [AreaA ~. pat + Area A rMnPo] (6.2)

Centroid position for a triangle is calculated using Equation (6.3).

Centroid ' (XC , YC) = (X + 3 r7 3 63

Centroid position for the polyhedron cross-section is precisely determined

by taking the weighted average of each of the triangle centroids, given by

Equation (6.4).

Polyhedron 'AreaA X, +***+ AeAl, rac ,, raY,64
Cross -secton Area eah XC AeACe+a reaA NYCCernroidAra Ae~

Polyhedron cross-section thinness is defined as the ratio of polyhedron area

to the square of polyhedron perimeter, given by Equation (6.5).

73

Polyhedron Polyhedron Area
Cross-section = (6.

Thinness (Polyhedron Perimter)2

If object height is needed and has not been, directly measured, it can be

estimated using-heuristic rules based on object depth, bottom depth or independent

object classification. Object volume is the product of cross-sectional area and

measured or estimated'object height.

Indirect attributes such as positional accuracy, confidence factor, inferred

edges and hidden edges are also evaluated. Point positional accuracy is derived by

combining current vehicle positional accuracy estimate with sonar accuracy or sonar

beamwidth at the range to the object. Confidence factor can be defined independently

of positional accuracy as a measure of how well the object matches a classification

rule. Hidden edge length is a measure of what is not known about the object.

Defining initial classification confidence factor as the ratio between hidden edge length

and detected perimeter further indicates how much of the contact has actually been

evaluated. Hidden edge metrics can be used to indicate whether further sonar

investigation of the contact is desirable. Figure 6.8 shows detected edges, inferred

edges and hidden edge relative to processed sonar returns, and how these geometric

primitives may not fully reveal all features of a contact.

E. EXPERT SYSTEM HEURISTICS FOR SONAR CLASSIFICATION

While geometric analysis can be defined with mathematical precision, human

knowledge regarding sonar classification is less rigorous and can best be encoded as

expert system heuristics.

1. Classification Heuristics and Attribute Heuristics

Sonar classification is not always a well defined problem. For example, it

is possible that sonar analysis of a single object can be performed from different

directions and lead to completely different classifications. An analogy to classifying

objects using simple range and bearing sonars is attempting to identify your

74

end point
start point \

....... I i..........
- regruslon lne segment................... infrM t
.......... hk z

Figure 6.8 Polyhedron detected edges, inferred edges and hidden edge may
not fully reveal all features of the sonar contact

surroundings while looking at the world through a steerable pinhole. It is difficult!

Consequently, sonar classification criteria are often ambiguous and difficult to

quantify, even when using formally derived geometric primitives. However, the

heuristic approach used by expert systems is effective in many types of inexact

problems and enables an autonomous system to obtain excellent sonar classification

results.

Heuristics can be used for evaluating attributes such as object height when

information is incomplete. Both attribute and classification heuristics can be easily

modified in understandable ways despite the ambiguities of sonar analysis. The

intuitive power of heuristics combined with the precision of geometric analysis gives

sonar classification expert systems wide applicability and adaptability.

For this expert system approach, classification of sonar contacts is

performed by comparing attributes of detected objects with predetermined attributes of

known objects of interest. Different classification criteria are necessary and desirable

for different environments. In particular, the different characteristics of deep ocean

75

versus shallow water versus anartificial pool will constrain the possible types, of.

objects tobe detected. Knowledge of the current environment can. be extremely useful

when determining the specialized classification rules and -heuristic criteria to, b used

for a given mission.

Precise classification of every possible object type may not be necessary for

some missions. Resolution of an ambiguous classification typically requires multiple

sensor looks, costing additional time and energy. Preliminary classification as a

potential contact of interest may be sufficient to justify maneuvering-for additional

sensing and closer investigation. Conversely, objects deemed to be of no interest

require no further investigation by the vehicle.

Size can be the primary classification attribute for most underwater objects

of interest. However, size per se is not a strictly defined term. It is worth mention

that significant object size may be indicated by-a variety of attributes including

cross-sectional area, volume, perimeter, thinness or hidden edge length. Any or all of

these size-related attributes may require close evaluation in order to properly

discriminate between similarly sized sonar targets such as mines and rocks.

2. Pattern-match Classification Examples

Examples of how heuristic rules work can illustrate how a sonar expert

system can classify objects. Two examples are presented here.

Preliminary wall classification is possible during the execution of the

polyhedron-building algorithm. Walls are defined as any flat linear surface of

non-trivial length. Polyhedra being built can be considered walls as long as each of

the newly added regression line segments meet colinearity and proximity criteria. As

soon ~ ~ ~ ~ ~ ,ALAI asU the poyhdrnbuldn alg1ith add a ew in e it based on
convexity criteria, the polyhedron being built can be immediately reclassified from

wall to object since the polyhedron is no longer linear.

Once a polyhedron has been built, all polyhedron attributes are

automatically calculated. At this final stage, all of the preliminary work to

quantitatively determine precise geometric objects greatly simplifies object

76

classification. For instance, a polyhedron might be classified as a mine-like object

whenever cross-sectional area is between 10 and 10osquare-feet (Figure6.9). Other

objects can be classified in an equally straightforward manner.

Some objects should not "be uniquely classified. For example,

discrimination between a scuba diver and a mine-like object may be difficult. A

particular strength of the expert system approach is that each object can receive

multiple classifications with associated confidence factors as appropriate. This feature

allows high-level reasoning using uncertainty, rather than being constrained by an

arbitrary and potentially incorrect single classification.

(defrule classify-mine-like-object

if this left-hand side of the rule is found to be true:

?poly <- (Polyhedron (status COMPLETE)
(classification OBJECT)
(start ?startpolytirne)
(end ?endpolytime)
(area ?area))

then perform this right-hand side of the classification rule:

(if (and (>= ?area 10.0) (<= ?area 100.0)) ; area criteria test

then (modify ?poly (classification MINE))

(printout t "The polyhedron at times " ?startpolytime
?endpolytime)

(printout t "has classification MINE.")

I ~ /I

Figure 6.9 Classification rule for a mine-like object

What was originally an intractable sonar classification problem is now

much simpler and understandable at the highest level of the expert system.

77

3. Self;Diagnosis and Self-Correction

An additional strength of the expert system paradigm is that rules canbe

written to evaluate overall system performance,, correcting internal vehicle problems

without external control. Self-diagnosis is possible when-' expert system evaluation of

sensor data differs from a priori knowledge of the real world. Such differences can be

automatically fed back into the system to correct the offending error. As an example,

gyro error and gyro drift rate can be diagnosed and quantified when a deduced wall

orientation does not match known geographic data. Updating system estimates of gyro

error and gyro drift rate result in an immediate improvement in sonar accuracy and

positional estimates.

F. EXPERT SYSTEM PARADIGM

The power of an expert system is essential for a sonar classifier to perform

high-level reasoning using qualitative attribute and sonar classification heuristics. This

section describes the salient features of expert systems that are pertinent to the

development of an autonomous sonar classifier.

1. Expert System Characteristics

An expert system typically includes the following characteristics: it

simulates human reasoning about a problem domain, it uses symbolic knowledge

representation and rules of thumb, it can analyze problems using heuristic or

approximate methods that may not be guaranteed to succeed, and it deals with

complexity that normally might require a human expert (Jackson 90). Expert system

development differs from usual software engineering approaches in that rules of thumb

can be developed incrementally to solve large problems that do not necessarily have a

clearly defined solution methodology. Complementary rules work together without

explicit supervision to discover solutions, if any exist.

78

2.. Knowledge Representation andReasoningusing Facts, Rules and an

Inference Engine

Expert systems typically use fac!. to represent knowledge about the, state of

the-problem domain. Facts can be known pror toexecution as part 6f theproblem

definition, and can also be discovered during program execution as new data-becomes

available or new knowledge is deduced. Rules are heuristic representations of human

reasoning that follow the condition-action model. If a rule finds certain conditions to

be true, then corresponding actions will follow and the rule is said to execute or "fire".

The inference engine is the mechanism that allows all of the rules to individually

examine the fact database and fire. The order of rule precedence and firing may range

from random sequencing to a strictly defined execution order.

Strict execution order is typical of traditional programming paradigms but is

usually considered to be an undesirable constraint for expert systems. Interestingly,

random firing of expert system rules often uncovers solutions to problems that might

otherwise be considered unsolvable using a strictly defined sequential approach.

3. Rule Sets and Control of Execution Flow

Given that a single rule miy be inadequate to fully evaluate a complex

situation, often groups of rules called "rule sets" are written to work together on

particularly difficult analysis tasks. Such organization of rules allows a manageable

and modular approach to expert system design. However, the random nature of rule

firing allowed by an inference engine may permit partially processed facts to be

accessed and used by other rules before the original rule set has completed the group

objective. For this reason it is usually desirable to ensure that rule sets are able to run

to completion whenever activated, before other rules are again allowed to fire. As an

example, implementation of the algorithm in Figure 6.6 requires several polyhedron

building rule sets working together in a coordinated fashion with parametric regression

rule sets.

Gi;en the unpredictable nature of heuristics when solving highly complex

problems, the expert system designer may need to impose some controls on execution

79

flow among rule sets in order to ensure orderly execution. Randomhess generally,

remains desirable and can still coexist-within the bounds ofrmie execution flow control

requirements.

4. Developing an-Expert System

When a new application appears to be suitable for an expert system

implementation, the first developmental step is to definme the application problem in

,clearly understandable terms. This;usually requires acquisition of expert knowledge in

the problem area to 1bc solved. The facts that may exist in the problem domain must

be stated as unambiguously.,as possible. The overall problem can be logically grouped

into simply stated subproblems consisting of condition-action rules (Jackson 90).

Once the problem is well-defined, facts and rules are converted from plain

language into the syntax of the expert system being used. When first building an

expert system, facts and rules: should be~added'in small numbers. -Incrementally -test-

the expert system and avoid adding-new rule sets until examples show that existing

rules work as intended. Additional adjustmentmay be necessary to ensure mutual rule

cooperation whenever new rules are added. Such anincremental prototyping approach

can be particularly effective when building large expeT systems (Sacerdoti 91).

G. IMPLEMENTATION AND EVALUATION

1. NPS AUV Vehicle Description and Sonar Characteristics

Naval officers and civilian scientists at NPS are conducting active research

using an AUV designed and constructed at the school. TheNPS AUV is used for

basic research and thesis work in control systems technology, artificial intelligence,

scientific visualization and systems integration. Specific NPS AUV project objectives

include the study of mission planning, navigation, collision avoidance, real-time

mission control, replanning, object recognition, vehicle dynamic motion control, and

post-mission data analysis (Healey 91) (Brutzman Compton 91).

The NPS AUV is eight feet long and neutrally buoyant, displacing 387

pounds with overall size and shape comparable to a small dolphin. Current vehicle

80

endurance is two to three hours. Maximum:speed of the NI'S AUV is: about tWo
knots. The NPs AUV trnting diaeter is kunder three boy le ngths, .designed tobe

ideal fof maneuvering-in -thelarge NPS.swi Pg pol. TheNPS poolallows precise

testing ji a quiet,.controlled environment. Open-ocean -testing, isgfeasibie butis'being

reserved for a more robust foll6w-on vehicle. Video clips showing'normal NPSAUV

opeiation are available in (Bruzman, Fyd, Whalen,92) and (Brutzman 92).

The primary components of he NPS AUY are an aluminum hull, fiberglass

sonar dome, four high-frequency directional sonar transducers, twin counter-rotating

four-inch propellers, lead-acid batteries, eight plane sufrfaces, and a Gespac computer

running a Motorola 68030 processor with a 2 MB RAM card. Figure 6,10,shows a

general schematic of the -NPS AUV.

Four PSA-900 Programmable Sonar Altimeters made by Datasonics Inc. are

orthogonally fixed in, the nose of the NPS AUV pointing, directly ahead, downward

andto port and starboard. These transducers are fixed frequency and ultrasonic, each

at approximately 200 Khz. Sonar range gate is selectable at 30 m-or 300 m, and pulse

length is 350 gIs. Normal pulse repetition rate is 10 Hz. Sonar beamwidth-is seven

degrees and range-resolution is 1 cm at 30 m.

2. CLIPS Expert System

A number of expert systems are commercially available. CLIPS ("C!'

Language Integrated Production System) was chosen for this application due to its

portability, extendabiiity, capabilities, thorough documentation and-interactive tutorials

(NASA 91). CLIPS is also reasonably priced (approximately $450 or free for

government agencies). CLIPS was developed by NASA to meet the varied

requirements of NASA Mission Control Center delivery systems. CLIPS syntax is

similar to the functional language Lisp and follows the if-then conditional rule model.

The most recent versions of CLIPS add object-oriented and procedural programming

capabilities (Giarratano 91). Since it is written in "C", CLIPS can run under most

computer architectures. A feature of CLIPS that makes it particularly suitable for

AUV use is that developed expert systems may be exported to nearly any

81

12

14

110

1. SONAR TRANSDUCKRS
2. PADDLE "MEKL'SP22D SENSOR

3. FORKARD RUODDRIA2)

44 RAT OROECOV:E (ROLL, PtTCV, AM 'VAN-RATIS6 .%:VCIKTMAL OIROSCOIS (OLL AND PIICN'AHGLSS)-

3.2. TOOTHED WSIL RtK SENSOR

4 1. PRPIt A ER(2

214. FILTrER CNSFROTOLSURFACE, SERVOS AND

19.' NCROCOMPUTER AND ANALOG TO DOOTAL/OtOTAt;
TO ANALOG CARDS

20..THRUSTER PROPELL91R' DAIVW MARKO
21. THRUSTER TUSC

22. THRUSTER ROUSING
23. CONTROL SURFACE SERVOMOTOR (8)

Figure 6.10 General schematic of NPS AUV

microprocessor by autogeneration of executable TC" language code. CLIPS has an
active user base, annual applications conferences, an applications abstract registry and
is provided with complete source ~code (Brooke 92).

82

3.- NPS AUV Sonar ClassifictionSystem

The:p ogram usedzto implement-the conieptse in this chper Wascon 'coleted Py is cP hapUWa

,writen using-tke CL"PS-exp&rtsystem. Actual sonar datacollected y-the NPS Auv

is recorded- in files for atef use as input to the sonar classification expert system

This sonar data is analyzed off-linewhile running-on a separatewoistation.

A vaiiety of outputs from the expert systemprovide several waYs to

visualize results. Two-dimensional- graphcs plots of raw :sonar data and corresponding

parametric regression line segments are shown-on screen and ashard copy. An output

file listing each iidividual geometric object and classification provides, both hard copy

of results and automatic input, to~the three-dimensional NPS AUV Integrated Simulator

described below.

Sonar geometric analysis is-computationally intensive. While running under

theCLIPS.environment0n a Sun-2 workstation, the expertsystem-is currently able to

maintain a-7 Hz-sonar return processing rate. This is nearly as fast, as the 10Hz data

rate recorded by the NPS AUV and, adequate for most real-time requirements.

Optimization, elimination-of network file Server bottlenecksahd, source code

compilation will, further improve performance., -Project goalsinclude porting-the

NPS AUV sonar classification expert system to a microprocessorintemal-to the

vehicle.

It is clear that a sonar classification expert- system can operate

-autonomously in real time.

4. NPS AUV Integrated Simulator

Typically the development and testing of AUV hardware and software is

greatly complicated by vehicle inaccessibility during operation. Integrated simulation

remotely links vehicle components and support: equipment with graphics simulation

workstations. Integration of actual AUV components with three-dimensional

simulation allows completereal-time, pre-mission, pseudo-mission and post-mission

visualization and analysis in the lab.

83

Integrated simulator testiiig'of AUVs is abroWdandversatile methodthat
-has proven Ver effective inthe development of the NPs A sona classification

expert system (Brutzman March 92); (Butzman. May 92). In particular, post-mission

simulator playbick of recorded telemetry, sonar sensor data and system state-

transitions supports in-depth reenactment, playback andanplysis of processed sonar

data. This scientific visualization approach pemits rapid and- precise development of

geOmetric aalysis tehniques and classification heuristics for theNPS AUV sonar

classification system.

High-resolution three-dimensional graphics.workstations can provide,

real-tine representations of vehicle dynamics, controlsystem behavior, mission

execution, sonar processingand object classification. Use of Well-defmed, user-

readable mission log files, as the data transfer mechanism allows consistent and

repeatablesimuiation of all AUV operations.

H. EXPERIMENTAL RESULTS

1. Classification Test Scenario

An example best demonstrates successful classification of, actual sonar

returns. A single swimmer was 'chosen to represent a mine-like~object and was

positioned as a target near the right-handwall of the NPS swimming pool, shown in

Figure 6.1i.

The NPS AUV was programmed to follow a racetrack traversal of the pool

and record all pertinent data. Figure 6.12 'shows individual left transducer sonar

returns plotted'as circles and vehicle track as a large oval, while the line segments

calculated by the parametric regression algorithm are shown superimposed. Some

distortion is evident due to unmodeled sideslip error in vehicle track data.

2. Experimental Results

The sonar data recorded by the NPS AUV in the pool are uploaded after

mission completion via modem and processed-off-line by the authors' sonar

classification expert system. Classification results are then graphically rendered by the

84

bunch ei

Figure 6.11 NPS AUV Iest track using leftiransducer only. Note, swimmer
target.

NPS AUV Integrated Simulator running ona-Silicon Graphics Iris workstation. This

three-dimensional' display shows'allgenerated parametricregression line segments,

inferred edges, hidden,-edges, and detected walls. The overallpool graphics display as

seen from a viewpoint high above the pool is shown in Figure 6,13. The target of

interest met classification criteria fora mine-like object and, a simuladon cl'oseup'is

shown in Figure 6.14.

The integrated simulator has the additional feature of being- abieto'play

back sonar detections and classifications siniultaneously with vehicle motion in, real

time or slow-motion. Evaluation of sonarclassification results-using the scientific

Visualization techniques provided by the integrated simulator was extremely helpful

during development and testing of sonar expert system classification heuiistics.

The experimental results show that the NPS AUV Autonomous Sonar

Classification System is highly effective at classifying objects despite the low

resolution of the active sonar employed.

85

Figure 6.12' NPS AUV sonar classification expert system plot of-pool data
andparametric-regression line segmients

I. DISCUSSIONS AND APPLICATIONS

1. EIktendabilityto Video, Lasers, Complex Sonars and, Sensor Fusion

Active sonar is not the exclusive sensor used for underwater object

detection and classification. A variety of other sensors are coming into use including

underwater videocameras andlasers. In addition to range and bearing data, advanced

sonars.may proVide completely different types of data such as frequency spectra,

doppler or'long-range conical beam data. Ultrasonic sonars have dliso been employed

by land vehicles.

All of these sensors.share common characteristicsthat allow. autonomous

analysis by expert systems. Each sensor type provides -data sets that can be analyzed

using geometric reasoning techniques. In every case expert knowledge can define both

quantitative and heuristic rules-for processing sensor outputs to create primitive

geometric objects, thus allowing object classification.

86

Figure6.13 Ig rIt zlsimulatorscreen,-display of thefullNPS pool -ad all,
sonar classifications,

Sensor fusion is the correlation of multisource information to resolve

ambiguity: and increase confidence,in individual classifications. Sensor fusion is,

particularly valuable in offsettiig the weaknesses of one sensor type with the strengths

of another. An example of sensorfusion might be to'correlateaccurate laser bearing.

data with accurate sonar range data. A thorough survey on multisensor fusion roles,

approaches and applications is provided by (Luo 89). Sensor fusion can be directly

implemented using the pattern-matching capabilities of a, multisensor classification

expert system.

2. Intelligent Remote Sensors

The use of remote sensors is becoming commonplace. The primary

limitation of most remote sensors is that they have little ability to independently react

to sensor inputs. Most sensing devices require direct control or have an arbitrary

sampling period, while continuously-sensing devices require dedicated data

communication lines. Remote-underwater sensors need- to operate autonomously or

87

Figure 6.14 Integratedsiulathor displaqlose-u p of 4ineie object,
classified-by ,the sonar-expertsystem using-detectededges,
inferred edges, hidden edge' and-cross-sectional area

with minimal externalcontroin order to improve their efficiency, capabilities and

cost-effectiveness. Embedding an expert system application using

microprocessor-based c6ntr01isa-feasibie method to create intelligent and autonomous

remote.sensors.

3. Data Reduction

Most sensor data is high bandwidth. Autonomous vehicles, remotely

operated, vehicles and remote sensors typically receive extremely large amounts of

data. Storage or transmission of raw data for off-line processing is undesirable and

imposes unreasonable memory capacity and communications requirements, A
significant benefit of autonomous classification is that it reduces, massive amounts of

raw data into concise information that can be efficiently recorded or communicated.

Data Without value is'easily filtered. The overall- data compression ratio can equal

several orders of magnitude.

4. Future Use of Expert Systems by Autonomous Vehicles

If autonomous vehicle sensors and missions are to become increasingly

capable and sophisticated, it is likely that parallel processing of distributed artificial,

intelligence modules will be necessary in order to provide adequate computing power

with real-time response. A typical set of high-level processes might include detection

and classification for multiple sensors, path planning, search, systems control and

88

others. Noe of these pr -iesesi coibpl ielydrndependent, but typi y each process

can-run in parallel-.with 'the others, most of-he time. :One abstract, softwae.

architecture- that supportsstuch a distibuted:apprach is-the blackboard parad"gim-

A blackboard system directy-extpndsthe funtonality seenin an erxpert

system for a collection of distributed-processes (Jackson 9). A good metaphor forthe:

blackboard approach is a group of human :experts working togetheron a-large problem:

usinga blackboard as their means of communication. Pi'oblem definition, data,

questions and answers can all be written and readon various sections of the

blackboard. Each independent expert has full access to the blackboardand looks for

informationpertinent'to -is:area of expertise, When an expert develops some result or

new question worth communicating-to the group, that information is~recorded on the
blackboard.

Similarly, a -blackboard-system has distributed independent knowledge

sources, each-of-which-can use any method desired to solve portions of a'large

problem.. Communications are recorded on the blackboard and are available to all

knowledge sources. Complex problems, are solved through cooperative reasoning

(Corkill 91). As another example, each-of the.:processes shown in Figure:6.1 might be

implemented as separate knowledge sources for a blackboard. Expert systems are well

suited as knowledge sources for the blackboard paradigm.

Development of autonomous, expert systems is likely to provide intelligent

components that will remain useful in the advanced architectures of future autonomous

vehicles.

J, CONCLUSIONS

Autonomous sonar classification systems can accurately detect and classify

objects in the-underwater environment. Precise geometric analysis is combined with

qualitative expert system heuristics to provide a flexible and robust approach with

wide applicability. Autonomous classification systems are capable of supporting

sophisticated real-time applications in working autonomous vehicles.

89

VIL SHORTEST PATH PLANNiNG USING A CIRCLE WORLD

A. ABSTRACT

Path planning is a critical capability for mobile robotsioperatin environments

containing obstacles. Building;a path planning module-as Part of this thesis has-been

helpfi4 in understanding design requirements, world models and software architecture

specifications both for-the NPS AUV and the NPS AUV Integrated Simulator.

Mobile robot-pathplanning around obstacles can be accomplished by modeling

obstacles as pairs of identical circles with opposite rotations. Addition of-robot radius

and safety standoff distances to circle radii allows modeling the robot as a point. This

circle world model can:be used to calculate shortest paths-between points.

Tangeits-betWeen individual circles in' a circle wold havt no iiherent

redundancy due to the geometric uniqueness of each(Iading qnd leaving point on

every circle. Altematepartial pahs landing-at an intermediateciitle obstacle must be

properly compared in order to determine which is- shortest. Dijkstra's algorithm or

(preferably) AV search-can selectively use visibility and~partial path comparison-

calculations to find the shortest, safest-or optimal path between start and goal points.

Tangent visibility from a single point to all circles can be calculated in

order O(nlogn) time. Similarly, tangent visibility from a single circle to all other

circles cOn be calculated in order O(nlogn) fime. -The shortest path between- start and'

goal points can be caiculated in ordei O(n210gn) time.

Since obstacle avoidance is a typical robot behavior regardless of obstacle

height, the circle world search model is directly extendable to the general case of

three-dimensional path planning. This -approach-is, shown to be particularly suitable

for underwater vehicle pathplanning.

90

B. INTRODUCTION AND PROBLEM DESCRPTION OF CIRCLE WORLD

Robot pathplanning is-the search for an allowable, safe or dptima!path for a

robot to follow from one location to another. A cridcal considetion inrobot path

planning is the choice of model to represent the obstacles that a-robot must avoid.

A well-known and findamental-method used for path planning is exemplified by

configuration space approach (Lozano-Prez 79) (Yap 87) (Akman 87) (Laumond 87)

(Schwartz 88) (Canny 88). In-the configuration space approach-a world is modeled as

a set of.geometric obstacles. Obstacle'boundaries are grown to include the effective

radius of a mobile robot. The mobile robot center can then be treated as-a reference

point. Any location -in the remaining non-obstacle free space is considered a legal

positioni for the mobile robot reference point. Visible tangents can then be calculated

between all obstacles. A fully connected graph is-defined by-obstacle boundaries and

the tangents between them. Determination of a shortest path-is accomplished by

searching the visibility graph for the lowest cost-path between start and goal points.

Polygons are typically the geometric form chosen to-represent obstacles.

Another simple and effective way to represent obstacles in a configuration Space

world model is to draw circles around them. The center coordinates of each circle in

the circle world model are located at the centroid of each corresponding obstacle. The

initial radius of each circle equals the minimum radius which completely surrounds the

given obstacle (Figure 7.1). The maximum radius of the moving robotis combined

with desired safety standoff distance and added to each obstacle circle radius

(Figure 7.2).

Such a circle world model allows a mobile robot to be represented as a moving

point. Any path in this circle world which can be drawn without crossing the interior

of a circle boundary is a valid robot path.

As the number of obstacles in a circle world increases, the possible number of

tangential paths from a start point to a goal point rises exponentially due to

combinatorial explosion. A simple circle world that includes all visible circle tangents

quickly becomes crowded (Figure 7.3). A typical circle world of moderate density has

91

0

Figure 7.1 Simple obstacle representation using circles

*Goal G

Start S

o 0

Figure 7.2 Improved obstacle representation including robot radius and
safe standoff distance

about half of the circle tangents traversable while the remaining tangents are blocked.

The normal objective of path planning through an obstacle field is robot travel

from a known start point to a known goal point. Typically a determination of shortest

path is desired, and therefore Euclidean distance traveled is the metric used to

determine the best route from start to goal (Figure 7.4). Other path selection criteria

such as safety or optimality may also be considered (Kanayama 88). The circle world

92

Start S

Figure 7.3 Simple circle world with all visible tangents

Goal G

Start S

Figure 7.4 Simple circle world shortest path

model and path planning algorithm presented here allow rapid and efficient

determination of shortest-distance paths.

At least one previous application, the Stanford cart mobile robot, used a similar

circle world model for obstacle representation and avoidance (Moravec 80)

(Moravec 83). However, the combination of vision processing and path planning

93

aboard thatsmall robot provedprohibitivelyslow for re,-ime use due t0 hardWare

limitations,.and greater algorithmic complexity.

Although most configuration space-treatmentsare based,solely on 'linear or '

,polygonal obstacles, obstacles composed of any closed-combination of line segments

and circular arcs are formally addressed in(Laumond 87). However -that work does

not explore the complexity differences between circle worlds and polygonal worldsfoi

tangent computation and shortest-path search algorithms.

It is~expected that the shortest-path planning algorithm provided in this paper

will support real-time path planning by autonomous robots. These results are

presented with additional mathematical theory and greater detail in (Kanayama

Brutzman 91), which is included as Appendix D.

C. GEOMETRIC CHARACTERIZATIONS OF CIRCLE WORLD AND

SHORTEST PATH

In a circle world, obstacles are modeled by surrounding them with circles.

However, each circle surrounding an obstacle can have two possible traversal rotation

modes: clockwise or counter-clockwise. In keeping with convention (Kanayama 91),

clockwise traversals of circle perimeters can also be referred to as minus~or

left-handed, while counter-clockwise traversals can be referred to as plus or

right-handed. A two-dimensional space filled with n noncontiguous obstacles can be

fully represented by n clockwise circles and n corresponding counter-clockwise circles.

Thus each obstacle is represented by two circles with opposite rotation modes, both

centered at the coordinates of the obstacle centroid.

The geometric data primitives needed to. fully represent a, circle world are Point,

Segment, Circle, Tangent, Arc, Configuration and Path. These geometric primitive

data structures are defined here using a hierarchical approach for simplicity and

clarity. When capitalized, these terms refer to the explicitly defined data structures

summarized in Table VII.1. These data structure definitions are included in order to

94

best, expiain-the circle world problem as-weUlas the circle world source codein

Appendix, E.

Table-Vil CIRCLE WORLD GEOMETRIC DATA STRUC-T.URES

Circle, World'Geometric StrUcture Elements Element-Data,

Primitives Data, Structures, Types

'Point x, y, float

Segment pointl, point2 Point

Circle center Point
radius float
direction CW (-1),

CCW (+1) or
POINT (0)

'Tangent circle Circle
angle float

Arc: circle Circle
ang&el, angle2 float

Configuration tangent Tangent
orientation float

Path initial-segment Segment
,000

(note: arc-segment pairs are arc Arc
repeated as necessary) segment Segment

A Point in a circle world is defined by a set of two-dimensional Cartesian

coordinates. A Segment is the line segment defined by two points that are connected

by a straight line. A Circle data structure is defined by a Point, a radius and a

direction of rotation. A Tangent data structure is comprised of a Circle and an angle

which is the orientation between the circle center and the tangent point on the circle

circumference. An Arc is defined by a Circle and two angles, corresponding to the

starting and finishing angles oriented from the circle center to the arc starting and

95

finishing endpoints, Note thAt Arc direction of rotation is not dependeft on the ,

Wpedence of Ithe ,starting and finishing angles, but rather is, implicitly included in the

Arc by the rotation -direction of the member Circle. A Configu raton is a: corbination

of a-Tangent and an orientation angle. The orientation angle of ,a Configuration is

always perpendicular to the componen tTangent angle -but, can bein either of two

directions. Thus a Configuration poiht defines whethera Tangent is a landing point r

a leaving point, Finallyi, a Path between a pair of startvand goal poits-in a circle

world .includes a Segment f01lowed by zero or more Arc-Segment pairs. A,-typical

Path includes a straight line segment from the start point to the first circlerobstacle, an

Arc around a portion of that circle, a Segment from the first circle to" the next circle

and so on until, the desired goal point is reached. As an example, a single segment

Path could directly connect the start and goal points if no-circle obstacles were

between them.

A special-case arises that is of use when designing visibility algorithms: a Point

can also be treated as special case of a Circle. Setting a Circle radius value7 to zero or

rotation-mode to zero (or both) effectively makes that Circle behave. as a Point. In

particular this approach allows-treating the start and goalpoints as circles, simplifying

evaluation of tangents and paths in a circle world.

Every pair of circles defines four mutual tangent line segments: two external

tangents and two cross-tangents (Figure 7.5). Note that the eight tangent points on the

circumferences of these two circles are unique. Also note that the respective lengths

of the external tangent segments and cross-tangent segments are equal.

The coordinates of the four possible tangents between the pairs of circles shown

in Figure 7.6 can be calculated using Equations (7.1), (7.2) and (7.3). Rotation mode

values follow the convention counter-clockwise (CCW, right-handed, plus or +1) and

clockwise (CW, left-handed, minus or -1). Points which are being modeled as special

cases of circles have rotation mode and radius equal to zero.

Angle 8 in Equation (7.1) and Figure 7.6 is the offset angle between the

circle-center-to-circle-center orientationO and tangent orientation a.

96

Tangential-Line Segments,

leaving points landing points.

Ir, ri tangents are "cross-tangents"
11, rr, tangents are "external tangents"

Figure 7.5 Tangential, line segments betw een 6irclies

arcsi mode2 4r2 - "I-de1. I (7.1)
distace(circient circle2.center)

,97

Circle Tangent Detemin7aton,

rOtatio model,- CW!-,- - rOt~n mod2-'CW--14

6 -sm (mode2,?r2 -,rijodel .
distance (circiel .centorcirclo2.center))

o- orientation (cirdel .center,.,drde2.center)
a - normalze(-)

r2 r

rotation model- OW -4

Figure 7.6 Determination. of circle cross-tangents and external tangents

98

Agle 0- . Euation (7.2) and Figue 7.6 is-the oriitat bet n-ile

centers.

0 -orientation (cireclcenter, circek.cener) (7.2)

Angle o in Equation (7.3) andFiguie76 is the erientation of the desired ngent

,between the circles.,

a= norm ; (0-,) (7.3)

Visibilityin circle word is defined-as the ability to connect two points using a

single-Ine segment without crossing nyJcn-le:'boundary. The first step in

determining visibility is to evaluatepoint-to-oint segment orientation relative to every

circle-,center-using-Equations,(7.4), (7.5) and (7.6). The three regions of possible

circle Iocations relative to the poinf-to-point segment are shown -in Figure 7.7.

Angle 0 in Equation (7.4) and Figure 7.7 is the orientation between the two

points being checked for visibility.

0 = orientation(pointl,,point2) (7.4)

Angle,81 in Equation (7.5) and.Figure .7.7 is theangle between the currentcircle

and line segment left side.

81 = orientation(pointl, circlecenter) - 0 (7.5)

Angle 82 in Equation (7.6) and Figure 7.7 is the angle between the current circle

and line segment right side.

82 = orientation(point2, circlecenter) - 0 (7.6)

To complete the visibility check for two points and a given circle, the circle

radius is now compared to the distance between the closest endpoint and the circle

99

PoY4;--Pont VsbIftyhcks

2 2

-Pint f, ppi

Three regions of possible circlelocations

o0- orientation (pointi, point2)
8 1 -orientation .(pointi, circlexenter)- -0
-82 -orientation (poirnt2, circle.center) --0

Figure 7.7 Determining point-to-point-.visibility in-circle world,

center. Three comparison results are possible. In the left-most. reh;on of Figure 7.7,

successful test of Inequality (7.1). indicates, that the. current circle radius should be

compared to the distance to pointifor visibiity determination.

n ~(7.7)

2

100

In- th center region of Fgure7.7, successful est of both Inequalities (7.8)-and.

(7.9)-indicate that, the circle radius in- questionshould be-compared-tothe distance to

'both point1 and point2 for visibility determination.

2 (7,4)

1871 >109
2

Ifithe right-most region of Figure 7.7, successful test of Inequality (7.10)

indicates that the currentcirle radius should be compared to the distance to point2 for

visibility determination.

]5~ (7.10)
2

This segment-visibilityo determination process must be repeated until any circle

intersection disproves visibility, or until- all circles in the circle worild have been

checked without intersection. A segment'that touches only the perimeter of a circle

without crossing the circle boundary can be :considered visible. Visibility

determination for a single pair of points~in a- world containing order O(n) circles has

algorithmic complexity of order O(n).

The primary objective of path planning, is to find, a safest or shortest path. A

simple measure of path costs in a circle world is the straightforward summation of

Euclidean distances along segments and'arcs. However, comparing relative costs

when two partial paths have different 'landing points on the same circle is more

complex. Although the first partial path can reach the intermediate circle obstacle

using a shorter route than a' second partial path, the second partial path can be part of

a shorter overal) route to the roal when travel around the current intermediate circle

circa.ference. is included. In-order to determine which partial path which will be in

101

the-short st overall path, the two partial paths - mustbe properly compred (Figure 7.8).

An.accrazte comparison can be obtained by including the cost of the arc between the

landing points of the two arriving partial paths. Application of Inequality (7.11) in

Figure'7.8 indicates which partial path is shorter.

ct (pah)) + arc-cost(a, b, mode) < cos 2)(71)

Note that such a comparison is only meaningful when each partial -path follows

the same direction of rotation around the intermediate circle being evaluated. The

definitions of Circle and Arc-explicitly include direction of rotation. Opposite rotation

modes around the same, obstacle are part of opposite, circles and thus mutually

exclusive paths. Should the leaving point for-the actual shortest path lie between the

'wo'partial path-landing points (e.g. points a and b of Figure 7.8), the longer of the

arriving partial, paths will correctly be excluded.

Successful determination of-visibility and correct comparison of intermediate

path costs for multiple ,points and circles allows the employment of search techniques

to find- the best path overall from start to goal. Formal statement and proof of the

path comparison proposition can be found in Appendix F section 4.3 (Kanayama

Brutzman 91).

D. ALGORITHM FOR DETERMINING VISIBLE TANGENTS

Assume that a general circle world is modeling n independent obstacles with 2n

circles. Visibility determination for a single pair of points in this world has already

been shown to have algorithmic complexity of order 0(n). The set of all pairs of

points that may need to be checked includes line segments from the start point to the

finish point, start point to a-tangent on every circle, finish point to a tangent on every

circle, and four mutual tangents- between each possible pair of circles. Tangents are

not possible between a circle and itself or its opposite. As a result, a total of

[4(2n)(2n - 2) + 4n + 1] = [16n2 - 12n + 1] possible line segments may-need to be

evaluated.

102

Comparison of Partial Path Costs-

a path2

path1

cost (path1) +arccost (a, b, CCW) < cost (path2)

Figure 7.8 Comparison of partial path costs

Since there is no inherent geometric redundancy in any of these tangent-points,

each tangent segment must be considered independently of all others. However there

is no requirement that every possible tangent segment be evaluated when determining

the shortest path. The proper choice of which points and segments need to be

evaluated is essential in order to conduct an efficient search.

Visible tangents from a single point to all other circles can be determined using

a sweep method (Preparata 85) (Figure 7.9) in order O(nlogn) complexity. The point

103

tofall circles visibility determination algorithm. is elaborated in Figures 7.10 and 7.11.

As tangents to each circle are evaluated, they are inserted into and removed from a

heap in order to be sorted by orientation. A second pass of the sorted cicle:tangent

data employs heap insertion. and deletion for direct determination of visibility of each

tangent

Visible tangents from a single circle to all other circles (Figure 7.12 and

Figure 7.13) can also be determined using this sweep method in order O(nlogn)

complexity. The single circle to all circles visibility algorithm is nearly identical to

the point sweep algorithm elaborated in Figures 7.10 and*7.11. Care must be taken to

require proper matching of rotation mode values between sweep direction and the

sweep circle when implementing the algorithm.

Similar swep method algorithms have been uased, for determining line segment

visibility (Wezl&85)-nd polygon visibility (Asano 85) in-order O(n) time. It is

interesting to note that substitution for each circle by a line segment connecting the

left and right tangents to that circle appears to make this type of sweep nearly

identical to the individual line segmenr visibility sweep in,(Welzl '85). However, each

individual circle has order O(n) such tangent landing and leaving points associated

with it. Thus, a circle world has at.east order O(n) more segments in the complete

tangent visibility graph than a.polygonal world or line segment world. This increased

complexity is, a significant, difference between the geometry of the circle world

problem and the standard polygon-based configuration space treatments referenced

previously.

E. SHORTEST-PATH DIJKSTRA AND A! SEARCH ALGORITHMS

Dijkstra's algorithm is a standard approach to solving the single-source

shortest-path planning problem (Manber 89). Given a start point in a circle world,

proper application of Dijkstra's algorithm will calculate the shortest path to each

clockwise and counter-clockwise circle until the designated goal point is reached. This

is a greedy algorithm in that the shortest available, path from the start point is always

104

Sweep Method - Point toAll Cicles

+, 4+ 32-

7+3+

7/ 1+

7 -
"

6-, 8+ 8-

Figure 7.9 Sweep visibility, determination from point to all circles

selected upon each iteration. Essentially the algorithm branches outward equally in all

directions.

While this algorithm is useful for building a complete collection of shortest paths

to all circle obstacles, it is extremely inefficient if only the shortest path to a single

105

O(nlogn) Calculate and sort circle tangents:

-- Calculate left and right tangentsto each circle. "Note that CCW and CW
rotations denote separate independent circles.
After calculating a circle's tangents, use heap insertiontosort the circle
relative toothers by orientation. If two orientations are equal, secondary
sort key is shortest tangent distance.
Keeptrack which is shortest right tangent.

O(nlogn) Perform circular sweep to determine tangent visibilities:

.- Initialize sweep termination angle equal to sweep starting angle.
-- Starting at circle with shortest right tangent, conduct a complete sweep in

counter-clockwise direction.
-- Meet right tangent: insert circle into heap.
-- If circle inserted is on top of heap (or tangent distance equals top of

heap), mark that right tangent as visible. Otherwise if circle was below
top of heap, mark right tangent as nonvisible.
Meet left tangent: remove circle from heap,
If removed circle was on top of heap (or tangent distance equaled top of
heap), mark that left tangent as visible. Otherwise if circle was below top
of heap, mark left tangent as nonvisible.

-- If circle with currentoleft tangent was not found in heap, it overlaps the
sweep starting angle. Change sweep termination angle to current sweep
angle.

-. Update circle heap pointer cross-reference table.
-- Similarly process any other circle tangent(s) at current sweep angle.
-- Increment sweep angle to next circle in sorted circle table and repeat for

all circles.
If necessary, resume at start of circle table and continue sweep until all
tangents through the sweep termination angle are reprocessed. This
allows anycircles which overlap the start angle to be correctly evaluated.

Figure 7.10 Explanation of sweep visibility algorithm from point to all circles

goal point is desired. If the robot is repeatedly operating in a fixed environment and

must frequently return to a specific location, however, a single application of

Dijkstra's algorithm using that specific location as a start point will provide all

shortest paths past all fixed circle obstacles. Precalculation of all shortest paths of

106

Algorithm SweepViiilityfromPoin (point, circle_world);

Input: Point from which visibility is to be checked, and circleworld which
includes start point, goal point, and both CW and CCW rotations of all,
circles.

Output: All cross-tangents and external tangents originating at point, including
lengths, endpoint coordinates, orientations and visibilities.

begin
n := 2 (#circles) + 2; (include CW/CCW circles, start & goal points)

for i := 1 to n do
tangent := calculate tangent (point, circle [i]);
push (tangent, tangent-heap);

(primary sort key is orientation, secondary sort key is tangent length)
if tangent.length < shortest-tangent.length then

shortesttangent := tangent;

for i := 1 to n do sorted-tangents [i] := pop (tangent.heap);

endangle:= shortesLtangent.orientation;
i := shortest_tangent index-in sorted_tangents list;

while sortedjangents [i].orientation precedes or equals end-angle do
if sorted-tangents [i].mode = RIGHT then

push (sorted-tangents [i], circleheap);
(sort key is length)
if (top (circle.heap).distance = sortedtangents [i].distance) then

sorted-tangents [i].visible := VISIBLE;
else sorted-tangents [i].visible := NONVISIBLE;

if sorted-tangents [i].mode = LEFT then
if not found (sorte, tangents [i], circleheap) then

end-angle := sorted-tangents [i].orientation;
(c,.ntinue sweep until all circles fully evaluated)
else if (top (circle-heap).distance = sorted-tangents (i].distance) then

sorted-tangents [i].visible := VISIBLE;
else sorted-tangents [i].visible := NONVISIBLE;
pop (sorted_tangents [i], circlejeap);
i := (i + 1) mod (n + 1); (look at next circle in ordered list)

end
Figure 7.11 Pseudocode for sweep visibility algorithm from point to all circles

107

Sweep Method, -CW Circle to AllCircles
5+ 4+ 2-

2+

7 1+

7-6. 8

' + /8-

Figure 7.12 Sweep visibility determination from clockwise circle to
all circles

interest may be more cost-effective than recalculating the latest shortest path objective

immediately prior to travel.

In the case of circle world search, the A search algorithm overcomes the

inefficiencies of Dijkstra's algorithm by applying an evaluation function to each

iterative selection in order to proceed as directly as possible towards the goal.

Distance remaining to the goal and arc cost around the current circle obstacle are

108

Sweep Method .CCW circle to All rcles
5+ 2-

33 ! '" " 3+1

5. 5 / 2

2+

41-

6/ +

7- 8+/
Figure 7.13 Sweep visibility determination from counter-clockwise circle to

all circles

included with path cost when determining which path of the many available should be

extended next (Figure 7.14). This search approach has the effect of driving the search

in the direction of the goal and ignoring paths that are expensive, i.e. paths that are

heading in a wrong direction.

The evaluation function comparison test applied in a circle world search is given

in Inequality (7.12) and Figure 7.14. Note that the evaluation function term for

109

A* Evaluation Function CoarisOn

goal= .. . ,. . -

path1 path2

cost (pathi) + arc ost (a, b, CW)? + distance (b, goal) >

cost (path2) + arccost (c, d, CCW) + distance (d, goal)

Figure 7.14 'A search evaluation function comparison

projected tangent segment distance from the current circle to the goal point does not

require the projected tangent segment to be visible.

cost(pathi) + arqcost(a, b, mode) + dseance(b, goal) 2

cost (pah2) + arc-cost(c, d, mode) + distance(d, goal) (7.12)

110

As eXpedt6d, the A search algoithm, is much; more, efficientthan Diijkstra search

in-a circle world. Given a reas6nably uniform distribution of'ncircle obstaclesAbouit

astait pirit, Dijkstra's algorithm tends to reach hdte goal inrder 0(n) sarch s teps

(Figure 7.15).

--. '1

,eq 33

irclO 14
, 9 30 c oal

i "i 'ole+ 16
+

9,2" Ic

0 ag 12

q l ?~ q1

Search stops for ODlatrra*s search algnrlthw 11 F'ebruary 1992 .7.53312 -x- 44.3212 -21.3212 -y- 31.5331

Figure 7.15 Search steps displayed for Dijkstra's search algorithm

It is conjectured that an A° search requires only order O(logn) search steps for

the same uniformly distributed circle world (Figure 7.16). Algorithmic efficiency is a

critical consideration in the path planning problem, since the total number of tangent

111

segments in the- visibility graph-is quite large. For- te twenty circles of ;the.
challenging exmlecrceworld, 684-of 1682 -totAl tagns(40.7%), are- visibl

(Figure, 7.17).

.C~role 4,
*Circic ircle 8 ol ~ 1

ircl cl IO- rcl

I7)rcie 12 (±co.

ceo20 0. Ci' C1 8

Ice19

ftago steps for A-star search, alqcrith-t 11 Ftehruary 1997, -7.3 -x- 44.3 -2C.3 -y- 31.3

Figure 7.16 Search steps displayed for A* search algorithm

Worst case A* search approximates -Dijkstra algorithm performance, appropching

order 0(n) steps only when all obstacles are between the start point and the goal.

Thus in every case A* search algorithm performance is superior to the Dijkstra

algorithm. A formnal proof regarding the optiinality of the A* search method in graph

112

-~~~~ 4i 13- --- *-m-*

Figre .17 Chalenin cirle wol iiilt rp
IQle ,7

f hallonginq circle world visil. y. graph 'll.rebriar
¥

1992 -7.59726 -x- 44.5699 -20.4679 -y-,31.6993

Figuire 7.17 Challenging circle World visibility graph

searching can be found-in (Hart 68).

The circle sweep algorithm (Figures 7.10 and 7.11) calculates Visibility from a

point ortcircle to all other circles in order O(nlogn) complexity. The algorithmic

complexity of the complete path planning problem using A* search is therefore,

order O(n2logn) in worst case, and conjectured to be order O(nlog2n) in best case. It

is important to notethat the best case is the most ,likely to occur situation where all.

circles are distributed randomly. The worst case is the less likely situation where all

113

crle 6bstcles ie directly-between the start- and goal point. Additional.work is,

.eededstofo0allyj deternineh complexity ofAsearch

given thespecial geometric constats of a-genea-cirleW6rld.

. IMPLEMENTATION ANY RESULTS

The author ha-Written a programin ANSI- C, toiliustrate -and evaluate- the
methods-described in this paper. Thefullprogram consists, of, geometric primitive

data structuredefintions, a library of spatial reasoning functions,.tangent visibility

determination -routines, search functions' to p form either Dijkstra-or A search,
graphical screen and hard" copy output, and a text-based user:interface. Source code is-

included as, Appendix, F;

Two methods are emPil6yed fr-outpudt Primary, output-consistsof large

coordinate text files including-, embeddedlabels (Figures 7.15,7.16 and7.17). These,

files -canbe sent to create two-dimensional graphical output- (Figure 7.18)",using

plotting.routines such asthe Unix graPh.command or the.sunplotroutine

(Muliender 87). Printed hard' copy or.,screen graph output can be generated.

Secondary output consists of a!iting of geometric, primitives such as circles,

points,,paths, segments and arcs. generated during execution. These high-level text

outputs can be easily -used, as -input for revised'circle world search runs (Figure 7.,19).,

The outputs canalso'be passed-as input'to independent-robot motion control processes

or graphical simulation programs such.as the NPS AUV Integrated Simulator.

ANSI C was chosen as the project programming language for purposes of

efficiency, portability andcompatibility with other robot -applications atNPS. It is

important-to note that circle world program inputs-and outputs-are language and

platform independent, however. While .the circle world.programs normallyrun on

.powerful workstations under the Unix operating system, they are. completely portable

to other architectures such asthe IBM PC or GESPAC 68030/OS-9 running on the

NPS AUV.

114

0.0000 0.000000
". Start"

35.000000 18.000000
". Goal"
5.000000 5.000000

". Circle 1"
7.000000 5.000000
6.999695 5.034905-
6.998782 5.069799

[.... etc. around each'circle perimeter]
7.000000 5.000000

16.5000005.00000
"Straight ine starttogoal.(cost =34.48)
0.000000 0.000000
16.000000 0.000000

II II

8.0000000.000000
Best path start to goal (cost,= 3611)

16.000000 0.000000

[.... various 'line, segments & bounding points follow]

Figure 7.18 Excerpt:from graphics plot file internediate output

'The current, circle world implementation-program uses an exhaustive and

iterative visibility determination algorithm instead of the more efficient sweep method

algorithm presented here. Source code optimization is worthwhile but not mandatory

prior to integration on board an operational real-time vehicle such as the NPS AUV.

G. THREE-DIMENSIONAL APPLICATIONS AND FUTURE WORK

The two-dimensional approach to path planning provided by the circle world-

model can be directly used for robot motion on any planar surface, such as a

laboratory, shop or warehouse floor. Interestingly, the circle world approach is not

constrained to path planning in two dimensions. This extendability is a valuable result

since efficient path-planning algorithms in three dimensions are considered to be an

115

CircleWorld Shortest Path De termination.

Point 10.00 5.00 0.00 Start
Point 125.00 65.00 0.00 Goal

Circle 10.00 25.00 0.00 5.00,
Circle 40.00 30.00 0.00 20.0
Circle 75.0 20.00 0.00 -15.00
Circle 100.00 45.00 0.00 18.00
Circle 20.00 60.00 ,0.00 5.00,
Circle 115,00 10.00 0.00 5.00
Circle 6500 5500 0.00 5.00

Path planning results: Best path (cost 143.8)

Segment 5.00 5.,00 0.00 42.72' 10.19 0.00
Arc 40.00 30.00 0.00 20.00 277.83 328.11 1=CCW
Segment 56.98 19.43 0.00 62.26 27.92 ,0.00-
Arc 75.00 20.00 0.00 15.00 148.11 139.87 -I=CW
Segment 63.53 29.67 0.00 86.24 56.60 0.00
Ar& 100.00 45.00 0.00 18.00 139.87 94.45 -l=CW
Segment 98.60 62.95 0.00 125.00, 65.00 0.00

Figure 7.19 High-level text listing of example' NPS pool circle world and
shortest path determination

area where more research is needed (Yap 87).

A Circle world can be used for robot path planning across irregular land terrain.

The fact that such terrain may not be level is not limiting as long as the robot can

generally traverse it. Only vertical obstructions, interfering holes and excessive slope

variations that prevent safe robot passage need be modeled as circle obstacles.

Remaining terrain surface features can be treated as planar and part of the

obstacle-free portion of the configuration space.

Three-dimensional path planning by robot vehicles can typically be performed

using a similar circle world approach. Most three-dimensional obstacles can be

represented as circles by taking the cross-section of each obstacle on a level plane

116

used-for robot travel (Figure 7.20). An irregular object can then bemodeledusinga

vertical cylinder. Such a cylinder defines the minimum raditu circle needed to enclose

all portions of the object Which are collision t'hreats in the plane or region ofrobwt

travel. Underwater-obstacles can be modeldin a similar fashion, where- the-circle

world ground plane represents the:allowable depth-bai d .of -robot -submarine :travel.

These circle world conditions are necessary and sufficient to model any set of

real world obstacles as long. as robot motion Is along a plane- or within a planar region.

Three-dimiensional obstacles are represented as cylinders, and a- path planning search

through.such a three.-dimensional:obstcle space is reduced to a two-dimensional circle

world search. Such a representationis particularly naturalfor underwater obstacles.

An example set of underwater- obstacles in-the NPS pool is~shown With,-a

corresponding shortest path in Figure 7.21, which isa direct output .of the circle world

path planning program. The same-data setis also shown in Figure 7.22 as rendered

by the NPS AUV Integrated Simulator using high-level text output from the circle

world path planning program.

These circle world methods are extendable ,to an analogous approach for polygon

world modeling. Additional program coding is needed to address overlapping and

adjacent obstacles. The simplicity, efficiency and effectiveness-of the circle world

model makes it well suited for real-time path planning by mobile robots.

117

3D Cylinders viewed-as 2D, CirCles

3D Perspective View

-START

GOAL

2D Circle World View

Figure 7.20 Three-dimensional cylindrical obstacles viewed as,
two-dimensional circles

118

I I - -. I

1Zirclo 6 Best at I(cast 1 38

145 --- 15 -50- -y- 110

Figure 7.21 Two-dimensional representation of obstaclesin the NPS pool1

119

Figure 7.22 Three-dimensional representation of obstacles in the NPS pool

H. CONCLUSIONS

Mobile robot path planning around obstacles can be accomplished by modeling

obstacles as pairs of circles with opposite rotations. -Addition of robot radius and

safety standoff distances to circle radii allows modeling the robot as a point. his

circle world model can be used to calculate shortest paths between points.

Tangents between circles in a circle- World- have- noinherent-redundancy or

duplication due to the 'uniqueness of landing and leaving points on each circle.

Alternate partial paths landing at an intermediate circle obstacle must be properly

compared in order to determine which is shortest. Dijkstra's algorithm or (preferably)

A* search can selectively use visibility and partial path comparison calculations to find

the shortest, safest or optimal path between start and goal points.

Tangent visibility from a single point to all circles can be calculated in

order O(nlogn) time. Similarly, tangent visibility from a single circle to all other

circles can be calculated in order O(nlogn) time. The shortest path between startiand

goal points can be calculated in order O(n2logn) time.

Obstacle avoidance is a typical robot behavior regardless of obstacle height. The

circle world search model is directly extendable to the general case of

three-dimensional path planning and is particularly suitable for underwater vehicle path

planning. Future circle world path planning implementations on a robot vehicle should

include polygon obstacles as well as overlapping and adjacent obstacles.

120

VEI. REAL- IE 0PERATINGSYSTEM AND AUV SIMULATION

CONSIDERATIONS

A. NPS AUV AND REAL-TIME.OPERATIONS

The NPS AUV is an untethered robot subn aifie designed for research in

adaptive control, mission planning, missionexecution, and post-mission data analysis

,(Healey 90). AUVs are typical of other autonomous robots in that a large number of

internal processes must run simultaneously while meeting stringent real-time

requirements, AUVs differ from other robots in that they are designed to operate

submerged and isolated from communication or external directions. Such missions

require extraordinarily reliable and robust.vehicle performance.

The principles and concepts particular to real-time operating systems are clearly

defined in a wide variety of references (Blackman 76) (Mellichamp 83) (Deitel 90)

(Nelson 92). An explanation of real-time control issues directly relating to

autonomous robot vehicles can be found in an excellent case study comparison

between the Ohio State University Adaptive Suspension Vehicle (ASV) and the

Defense Advanced Research Projects Agency (DARPA) Autonomous Land Vehicle

(ALV) (Payton 91).

Although numerous software modules have been written with the NPS AUV in

mind, very little software has actually been implemented, integrated or tested

underwater in real time. The main reason for this deficiency is the current lack of a

flexible high-level software control module that can efficiently coordinate multiple

NPS AUV processes using the OS-9 real-time operating system.

This chapter examines the real-time operating system issues that are pertinent to

the development of the NPS AUV. These considerations pertain equally to the

Gespac/OS-9 microprocessor and support hardware portions of the NPS AUV

Integrated Simulator.

121

B. HARD AND SOFt REAL-TIMEREQUIREMENTS ,

In order to perform numerous sophisticated mission functions,, multiple procesSes

must be operating, simultaneously, while meetingbobt strict and relaxedreat-time

schedule requirements. The autonomous nature of an AUV requires operation without

external backup in a harsh and unforgiving environment. Vehicle control, sensor

evaluation, underwater navigation, search, path planning, obstacle-avoidance,fault

tolerance, and numerous other processes are required. All processes must interact with

the external environment and each other in realtime with varying degrees of

interdependence (Bobrow 91)..

It is important to distinguish betweenhard and soft scheduling criteria for

real-time processes. Mission-critical actions such as vehicle control and failure

detection are hard real-time scheduling requirements. Failure to meet such hard
deadlines may result in mission failure or even catastrophic loss of the vehicle.

Conversely, high level logical processes-such as path planning or mission replanning

might always be considered soft requirements, since their execution is rarely

mandatory for safe vehicle operation and immediate results are not required. Finally,

some processes may have priorities that vary from soft to hard depending on

circumstances. For example, obstacle avoidance is-typically a soft requirement until

target proximity or rapidly closing range rate make immediate action necessary to

avoid collision.

C. NPS AUV PROCESS DEADLINE SPECIFICATION AND SCHEDULING

The current NPS AUV mission software schedule runs a single simple mission

control loop using a 10 Hz clock. A full 100 millisecond interval is allotted for each

mission loop, but no processes are allowed to exceed that period. This interval is

adequate to perform numerous tasks: compute basic vehicle control orders, transmit

using one to four sonar transducers, record all current vehicle data parameters in

working memory, perform rudimentary sonar analysis, detect waypoints, detect

potential collision, and order predetermined state changes in propeller speed and

122

controlsurface position. Typically-very little time remin sat-the endof eachfixed.

100- millisecond time segment. Such a sm ple hard-wired timing mechanism is not. a:

feasible control. architeture, for.AUV software.f even- slightly geater coi1exity.

Proposed NPS AUV software modules are shown by the data floW diagram of

Figure 8.1 :(Healey 90). -Only the basic interdependencies of these: NPS AUV task

modules have been characterized. Aformal analysis, of software module

specifications, timing requirements, task periodicities and concurrency, dependencies

has yet to be performed. It islikely that the NPS, AUV software modules will

ultimately have timingconstraints and, periodicity characteristics similar to those

developed in Table ViII;.

N" AUV SOFTWAU FOCIS DATALOW DIAGRAM

SKONRQURMNSMSN PATH AL

DATABASE OBSTACLE ISSION

OBSTACLES 2

NEW SYSTrEM

OBNL STACLE RSTAT1S STATU

F. M E CY OS TUES
STA(E POWUM

DATA ODATACLE

KNOWN ALEXDT

FLOOD

POTUE GUDAC SSTM

DAA SONAR 6 3

DATA
CONTROL

SIGNALS DEEO

FLOYD

Figure 8.1 NPS AUV software process dataflow diagram

Current real-time operating system research at NPS has focused on

rate-monotonic scheduling theory, an approach that employs fixed prioritization of

123

Table VIII. AUV S OFTWARE MODULE, REAL-TIME,
CHARACTERISTICS

AUY Software, Modue Reil-TimdeEkecutio Characteristics,

Plan/Replan Mission Soft Aperiodic: Event triggered

Execute Mission Hard 'PeriodicEvr
"control
loop

Guidance Both Periodic -Every loop
'unless

_____ __________preempted

Autopilot Hard ,Periodic Every
control

____ ____ ___ ____ _______ ____ ___ loop

Process Sonar Data Hard .Periodic- Every -loop
unless

___________________ _____ _ ___ ___ ___ preempted

Navigate 'Soft Aperiodic Every loop
unless

____ ____ ___ ____ _______ ____ ___ preempted

Monitor Systems Status both Periodic Every loop
unless
preempted

Avoid Obstacles Hard Periodic Every
control

_______________ _____________________________ ________________lo o p________________

processes and guarantees acceptable average performance (Leatherman 91)

(Makris 91). Benefits of rate-monotonic scheduling include guaranteed completion of

periodic tasks in order of priority, fast response for aperiodic: tasks, modifiable task

priorities, and the scheduling of tasks that permit imprecise computations (i.e. output

124

prepision-proportionaltotime avalable). Rate-monotonic task anaysis and scheduling

'is performedoff-line prior to actual% execution of system software. Rate-monotonic,

scheduling implementations running-dummnyprocesses under.e.'OS7-9 perating

system~havebeen shown tO provide processor utilization above-80% andgracful

degradation under overload.

Dynamic adjustment, ofconstraints and process schedules may ultimately be

required to ensure successful AUV operation during unforeseen tactical scenarios or

pathological process conflicts. Dynamic scheduling theory requires further formal

research to provide a verifiable theoretical'foundation, but'it appears to be a~desirable

model for the distributed artificial intelligence applications likely to make up the

AUV. In this regard the FLEX programming languageis worth consideration since it

implements dynamic scheduling theory and generates C++ code as output (Kenny 91).

Additionally there exists a hybrid approach known as a mixed priority system that

combines the best features of rate-monotonic scheduling and dynamic schedtling

(Leatherman 91). Formal evaluation of the mixed priority approach also appears

worthwhile.

Given that AUV-related research is likely to continue for many years by several

academic departments at NPS, operational software changes and additional new

software processes will always be under development and require integration into the

overall NPS AUV system process schedule. Reliability, compatibility and

extendibility for future growth must be key requirements for any proposed control

process timing schedule. Robust and flexible interactions between numerous

interdependent processes will be essential to allow frequent improvements to vehicle

performance while maintaining vehicle reliability.

D. PARALLEL PROCESSING AND CONCURRENT PROGRAMMING

It is important to note that parallelism is equally as important as real-time

scheduling for an AUV operating system. This is particularly true if low-level control,

complex behaviors, sensor fusion, data analysis, mission planning and numerous other

125

artificialintedligence aspects of robot, mission exection mUSt aillcoexc istand c6oprate

in.a rapidmanner (Stank*vic 88).
Non-trivialrobot, erformanceequires that numerous processes oprate in,

paxalel, either independentlyor in a mutuallydependent fashion (Kasahaia 88).
Numerous challenging AUVimission requirements will ineVitably -lead to multiple

software modules operating concurrently. Such parallelism might;bniosteasily

implemented using a multiprocessor architecture. An AUV'sreal-time operating

system must completely support concurrency constructs that are fully integrated With

the real-time scheduling mechanisms.'

SeVeral standard features of parallel programming are necessary for effective

software engineering of a real-time AUV. Adequate shared memory is essential, if
numerous processes are to quickly and efficiently access system state variables and the
large amounts of time-sensitive , sensor data that is expected, Predictable rendezvous,

synchronization and communication methods must be available, both for interaction
between mutually dependent processes as well as loose overall control by a mission

executor module.

Increasing hardware sophistication can further allow tasks to be distributed over
a network among separate specialized embedded processors (Stankovic 88).

Extensions of process rendezvous, synchronization and communication must be

available for distributed processing if networkedprocessors are to be employed.
Massively parallel processing in the classic sense uses numerous processors in

parallel to perform array processing or numerous parallel solutions of idenftical
algorithms. Such an approach is not a likely requirement for AUV operation. Aside
from potential analysis-of sophisticated sensor-data using vision processing techniques

few (if any) AUV functions can be decomposed into numerous identical subproblems.
The diverse nature of the many AUV software modules implies that a transputer

architecture is not a prerequisite for successful integration of multiple AUV processes.

Nevertheless the transputer paradigm may be an effective way to minimize interface
difficulties while allowing unlimited addition of numerous unique parallel processes

126

under a, sinigle itrted re miprtgystem. This approach is also 'being

consideredbyC.S. Draper Laboratories for the next-generation software arhitecture f'

the DARPA Unmanned -Underwater'Vehicle-(UUV)(Hae 91).

E OPERATI G SYSTEM COMATIBILITY AND INTEROPERABrrITY

It is important. that the AUVoperating-systembefuly compatible withall

current and projected vehicle hardware ,and, software. -External connectivit of the

real-time operating system is also -iportant.

Hardware interoperability-considerations must consider-connections between

multiple piocessofs of various types internal to the Vehicle, as-well as numerous

analog/digital and digital/analog interfaces. Space, weight and power requirements are,

very strict so internal AUV hardWare architectures must be closely compatible.

Physical compatibility-improves vehicle endurance by reducing power consumption.
Software compatibility is less critica tha hardware compatibilit, but softwa e

incompatibilities can still impose undesirable processing delays if too much work is

required to translate communications-between processors. Network- support and

software interfacing will be needed when different operating systems reside on

multiple processors. Multiple programming language support is desirable for

unrestricted research in a variety of control system and artificial intelligence subjects.

Process encapsulation is desirable in order to minimize faults and side effects'during

software development. High-level software access to machine-dependent,

machine-level and device-dependent routines is also needed. Such routines permit

various processes to utilize the operating system for direct access and control of the

numerous physical components of the AUV.

Although an AUV is untethered and isolated during operation, a number of

external compatibility requirements remain. Mission data collection, consolidation,

storage and transmission are ultimately targeted for external off-line post-processing

and analysis. Distributed processing 9ver a network internal to the AUV requires that

each individual operating system must be able to interact with the otheirs. Interactive

127

network conimuicationis,. also a.likely: rquirement for/on-lIn'1 abr'atortesting of

the AUV -¢.onnecting th vehicle similAr lab prototypes ,t6 aiiintegrated siniulator

al6lws scientific visualiz tidonof AUMprocesses for active rteal-timeend-to-end

developmentil testing. For ihese reasons the, AUV must be able to commiunicat in,

some fashion with non-native-operatingsystem0Siand softwarti environments. External

connectivity is -essential-to support thediverse aid-distributed lcommunities that

conduct AUV research.

'Several other operating systems are worth noting. Real-time constructs and

compatibility can be-incorpOrated into typically non-real-time operating systems such

as Unix by adding scially designed message-passing-processes(Cramer 88)

(Falk 88) (Hildebrand 88).. Modifiedreal-time kernels of common operating systems

such as Modular Computer Systems Inc.'s Real/IX for Unix or Digital Research Inc.'s

FlexOs, for DOS.are viable and commercialyavailable (Falk 88) (Baerson 91).

Standards development work continuesfor Posix, an openoperating system-

specification based on Unix that includes-real-time -constructs (Deitel 90) (Falk 88).

As robotic systems and intelligent machines become more commonplace, the

interactive design concepts of TRON (The Real-time Operating system Nucleus) will,

become increasingly important (Kahaner 91). Finally, a distributed operating system,

may provide the most efficient control mechanisms for distributed, processors sharing

distributed resources (Dasgupta 91).

F. OS-9 OPERATING SYSTEM

OS-9 is Microware System Corporation'sreal-time operating system-used by the

NPS AUV. OS-9 is designedto run exclusively on the Motorola 68020/68030/68040

family of microprocessors (GESPAC 89). 'the two specific hardware configurations

used in the NPS AUV include GESPAC 68020 or 68030 microprocessors connected to

a GESBUS (VME bus compatible) backplane. Serial ports, parallel ports,

analog/digital interface cards and an Ethernet interface are available for-internal and

external connections. Also available for internal networking is an Intel 80386

128

Smicroprcessor. INMOS'T805/T425 transputers were also tobe connectedbut areno

ionger manufactured in a configuation-compatible with the GESBUS. No suitable

transputer replacement: has yet beeni identified.

The OS-9 process States available include start (fork), activerun,.exit, sleep ,

wait (process synchroniation), devent Wait, (semaphore communication). Process

staietransitions are-shown iiFigure 8.2 (GESPAC 89).

PROCESSING'STATES

• EtAPSEDTIMt
SSNNAL RECEPTIONA

onEVWAIT

'LE P EXIT

:SLEEPce ALLGNLCACPiON

O EoSPAC Inc. 196 A process Is the execution of an executable type module

Figure 8.2 OS-9 operating system pr'ocess states

OS-9features that support expected AUV operating system requirements include

.: adjustable priorities and aging for explicit execution scheduling, preemptive process

switching based on priority, reprogranimable interrupts, a trap library, events for

process synchronization, signal communication between processes, pipes for

interprocess data tfanisfer, and redirection of process inputs and outputs (Dibble 88).

129

Identical' syntax when referring to processes, or devie, diivers is-a paiti'ciilrly

convenient feature of OS-9.

Deficiencies and shortcomings of OS-9 include the current lack of compatible

Ada or C++ compilers, and no, simple method of deadlock protection. Additionally a

fully modifiable operating system, kernel, must, be.prepared thrOUgh careful EEPROM

configuration prior to operation. This preparation alloWs setting-Up the operating

system tO include only the device drivers that are necessary for the current vehicle

'hardware. OS-9 is very flexible in that additional drivers may be loaded at any time

after system initialization by software command. However the EEPROM

configuration process is time consuming, version dependent and error prone, due to

limited- self-diagnostic testing.

G. CURRENT PROBLEM AREAS AND FUTURE RESEARCH

Deadlock detection in a real-time vehicle can be guaranteed'by designing a

special periodic real-time process for that-purpose. An example can be shown using

the NPS AUV software module information in Figure 8.1 and Table VIII.I. The

NPS AUV has'a tight inner controlloop that includes the Mission 'Executor and,

Autopilot that must completely repeat on a.frequent periodic basis of approximately

one second. These two periodic processes, can be required to toggle state'variables

every time the one-second control cycle is successfully completed. Failure to do so

after several seconds is a clear indication of some type of critical problem such, as

deadlock. Recovery after deadlock detection can be promptly accomplished by

reinitializing vehicle control loop software. This new approach to rtal- time deadlock

detection is a straightforward solution to a problem that is frequently considered

intractable in non-real-time operating systems.

Deadlock prevention is expensive but essential because the independent,

unmonitored and uncontrolled nature of an AUV makes reliability paramount for

vehicle survivability. Redundant approaches to deadlock prevention, deadlock

detection and deadlock recovery are worthwhile. Resolution of deadlock is a

130'

pArticulrly-sensitive area,- given the frequently changing NPS AUV softwae and-the

unpredictable ordering of process, preemptions and interactions in real Itime.

As varioussoftware modules are integrated into the. NPS AUV, software,

engineering considerations become increasingly important Key isues are systems

integration,-verification and validation of process behaviors despite real-time

interaction uncertainties, software version-control, and system software upward

compatibility for integration of future software modules. Failure to methodically

address- software engineering issues, will undoubtedly lead to unpredictable AUV

behavior and tremendous amounts of time wasted troubleshooting. individual software

modules rather than subtle faults in-the operating system implementation.

Fault tolerance is also-needed to guarantee overall vehiclereliability and

robustness. The approach taken needs to primarily rely on software checks, rather

than the use of redundant processors found in some largervehicles (Hale 9i). Fault

tolerance requirementswilR need to be specified fok -the.top-level-mission executor- as

well as all individual processes. Selection ofa distributed multiprocessor architecture

allows hardware-based fault tolerance, since-failure of a given node can-be

functionally corrected -by reloading and sharing the lost software modules onthe

remaining working processors.

Further-work is needed to-define formal-specifications, characteristics and timing

-constraints for all NPS AUV software modules. Software module specifications need

to include inputs and outputs, functionality, module dependencies,, hard- or soft

scheduling constraints, periodic or aperiodic execution, relative priorities, expected

frequency and duration, and all other parameters of importance to -integrated system

design.

The toppriority for NPS AUV operating system software integration is to

establish a new baseline architecture of system software running in the vehicle. This

will allow more sophisticated operations and the addition of new processes to the basic

-control loop. It is unfortunate that most theses written about the NPS AUV to date

have been unable to test their conclusions using the actual vehicle in the water.

131

Ensuring maximum processor utilization-through improvements to the

rate-monotonic scheduling.algorithm is-important work that is expectedto continue by

verifying current scheduling conclusions using, actual. NPS AUV 'rocesses. The

incorporation.of dynamic scheduling features holds. gieatipromise for-the effective

coordination of numerous distributed-artificia intelligence .software modules.

Perhaps the most interesting research immediately applicable tothe NPS:AUV is

the investigation of alternate system-software architecture organizations May

possibilities-are available -Which might incorporate-multiple intelligent agents,

low-level behaviors, expert systems and blackboard paradigms (Wright 88)

(Durfee 88). A real-time~architecture that all6ws flexibl, support of a variety of

compatible software approaches will provide the best framework for rapid research

progress.

The NPSAUV is a key project that integrates many of the critical technologies

important to the-Navy of tomorrow. The successffilestablishment of a-reliable and

robust real-time system software architecture will be the foundation that supports all

future NPS AUV 6perations.

132

IX. PERFORMANCE EVALUATION ANDWFUTURE RESEARCH.-

A. SIMULATOP LIMiTATIONS-AND PERFOR-MANCE MEASUREMENTS"

The NPS AUV Integrated Simulator is designed to eliminate as mny d4ign-

restrictions as possible in a distributed research environnmnt. There are two primar',

limitations that restrict integrated simulator performance: graphics ulation progm

display rate and data transfer rates.

The NPS AUV Integrated Simulator graphics simulation prograni is written in

ANSI C and uses the GL Graphics Library to.run onaSilicon GaphicsInd.

Iris/4D 240VGX workstation. The complexity0of drawing panel iaiteffaceisd

multiple complex objects restricts the-playback speed .thegraphids simulationi program

can maintain. Maximum speed of playback with no associated envionmetal objects,

to be drawn is 7 Hz (i.e. 7 frames per second), nearly matching the telemetry sampling

rate-of 10 Hz. Worst case playback screen update-rate using' actual in-water test dat

has been 1-2 Hz. Playback rates are cbfrespondirgly lower on, less cApable -is:.

workstations. Although the Worst case i-2 Hz screen update rate may-appear

somewhat jerky to the user, screen vehicle motion accurately renders rea.-time vehicle:

motion since intermediate telemetry data records are sldpp&l'. Further iinprovements-

in the screen update rate are possible if control panel interface code is optimizd -and

the overall simulation program is tuned andparallclized for peak performance.

Data transfer rates over the network currently do hot impact integrated simulator

performance since data packets and socket software are.not yet implemented.,

However this can be a significant bottleneck that prevents realistic performance, given

current experience with packet-passing simulation (Byrnes 92). Integiated simulator

implementation of software sockets must be tolerant of packet delivery time delays or

nondeterministic and incorrect results will, occur.

133

B. INTEGRATED SIMULATOR FOLLOW-ON WORK

Several:possibilities invite immediate foilow-0ni work to the NPS AUV

Integrated Simulator.

A vehicle hardware model and hydrodynamic vehicle respOnse model need to be,

added to the simulator to provide realistic simulation of vehicle physical response

using the laboratory AUV. Previous hydrodynamic response models have been part of

the graphics simulation code. However network time delays do not allow accurate

response or correct interaction between the laboratory AUV and the graphics

workstation. Realistic integration of hydrodynamic response with simulation can be

accomplished by making the model an, independent OS-9 process or placing the model

on a separate connected microprocessor inside the laboratory AUV backplane chassis.

Validation of the model can be conducted through test comparison with actual in-water

data.

Software-sockets that allow passing data packets between processes need to~be

implemented in a way that is simple for any NPS AUV programmer to use. Socket

implementations are already available for Unix processes, including GL-based graphics

simulation programs. The key challenge will be to implement compatible software

sockets for the NPS AUV source code running under the OS-9 operating system.

Sonar visualization capabilities have not been added to the graphics simulation

program. Addition of graphics polygons to represent sonar beams, echo contact points

and error boundaries will improve the user's ability to visualize real-time interactions

between the vehicle and the environment.

C. POTENTIAL FUTURE RESEARCH

The NPS AUV Integrated Simulator provides a foundation for many types of

future AUV research. The following areas are of particular interest.

The NPS AUV vehicle control software needs to allow modular addition of

software processes shown in the block diagram of Figure 2.6. Current vehicle

software is limited and supports only rudimentary behaviors. Access to the

134

laboratory AUV via the iiitegrat d simulator data network allows all interested
'researchers the opportunity to test their programs on the vehicle. The baelie AUV

control software must be upgraded to support these increased demands.

Scientific visualization techniques hold great promise for rapid understanding of

complex physicalprocesses. Visualization can be used for comparison of theoretical

and empirical data. Close evaluation of hydrodynamics and vehicle sideslip models

may reveal general techniques for formal model verification.

Visualization of sonar and acoustic interactions is a promising area of research.

Sonar visualization can be directly implemented in, the integrated simulator for new

and proposed sonar types. Sonar visualization will greatly increase user understanding

of sonar performance and is likely to have tremendous tactical and training

significance.

Simulation of world models is not a precisely defined science. Accurate

simulation world models are-needed for navigation, the external environment,

hydrodynamic response, sonar acoustic behavior and physical vehicle hardware

components. Additional research is needed to determine the specifications of these

world models, validate their correctness and show how best to implement them in the

context of an integrated simulator. Successful integration of general world models

into a real-time simulator is a prerequisite to production of a virtual world where

complete and realistic interaction is possible.

Numerous additional research examples are conceivable. Current and future

researchers working on the NPS AUV project will undoubtedly develop their own

applications and extensions using the NPS AUV Integrated Simulator.

135

X. SUMMARY

The development and testing of AUVhardware and software is greatly

complicated by vehicle inaccessibility during operation; Integrated simulation,

remotely links vehicle components and support equipment with graphics simulation

workstations. Integrated simulation allows complete real-time, pre-mission,

pseudo-mission and post-mission visualization and analysis in the:lab environment.

Integrated simulator testing of r software and hardware is a broad and versatile method

that supports rapid and robust diagnosis and correction of system faults.

In order to fully understand the simulation requirements of demanding artificial

intelligence processes necessary for AUV operation, in-depth studies are included for

path planning, expert system sonar classification and real-time operating system

considerations. Conclusions specific to these areas of research are included with each

chapter.

High-resolution three-dimensional graphics workstations can provide real-time

representations of vehicle dynamics, control system behavior, mission execution,

sensor processing and object classification. The flexibility and versatility provided by

this approach enables visualization and analysis of all aspects of AUV development.

Integrated simulator networking is recommended as a fundamental requirement for

AUV research and deployment. The availability of the NPS AUV Integrated

Simulator for distributed research promises to benefit all future NPS AUV work.

136

APPENDIX A. NPS AUV INTEGRATED SIMULATIOR USER'S GUIDE

The NPS AUV Integrated Simulator is designed to be accessible to anyone

• performing AUV-related work at NPS., This User's Guide shows how to utilize the

integrated simulator for mission playback, software design or vehicle visualization.

An additional example which shows how a standalone application can use the graphics

simulation program to visualize NPS AUV behavior can be found in (Compton 92).

1. NPS AUV GRAPHICS SIMULATION EXECUTION

The graphics simulator program is executed by logging on one of the Iris

workstations, changing to the appropriate directory (default -brutzman/auv) and typing

auvsim. The auvsim graphics simulation program loads all high-level objects and

commands in the current pool.auv file. Users can move their viewpointand reference

point around the simulated world, run telemetry replay files, and reposition individual

objects as desired.

2. NPS AUV INTEGRATED SIMULATOR CONTROL PANEL

A simple control panel has been provided as the user interface to the simulator.

Two types of files may be entered in the filename type-in box: "filename.auv"

high-level object files and "filename.d" telemetry files. High-level object files are

used to enter objects into the simulated world, position the AUV, change the

background environment graphics object and provide commands to the graphics

simulation program. Telemetry replay files are files of floating point records, each of

which represents NPS AUV state at a given time. File specifications are described in

detail in Chapter MI. Sample high-level object files and telemetry replay files are

shown in Figures A. 1 and A.2.

A great deal of functionality is included on the control panel. The name and

number of the current object of interest is displayed along with position, scale, posture

137

; this is a commeht for high level -object file test.auv

; note free format any comment allowed after data

clear

object mine.off 40 20 0 scale 2 time 12

mine 70 43 1 1.5

circle, 5 5 1 2

colors 255 0 0 1.0 0 0 255

line RGB-alpha-wall RGB

WALL 20 20 0 50 50 8

line 20 20 1 30 40 1

colors 255 255 0 1.0 0 255 0

line RGB-alpha-wall RGB

line 30 40 1 50 50 1

point 50 50 1

object cylinder.off 15 15 1

cylinder 70 43 4 11

origin 20 20.1 1 this is the new reference

origin for coordinates to follow

; the next point will be at 20 20.1 1

point 0 0 0

origin 0 0 0 origin reset to pool corner

AUV 20 10 2

environment nps_pool.off restores pool environment

gyroerror -15.0 degrees

gyrodrift -1.1 deg/min

replaysize 3 (type 3 = M35, 17 values per line)

replayfile m35.d

depthband 0.0 8.0 all dimensions in feet

Figure A.1 Example high-level object file

138

0.0000 0.000o0 o.00000 0.16104 -0.05 569,0.050224 0.056758 -0.133328
-0.017602 -0.031889 0.125950 -0.045393 0 0 313- 11558:

0.100000 0.199678'0.01"1346 0.158827 ;0.0788230.062779 06.057525-0.155013
-0.017602 -0.024220 0.131.702 0.0010130 00 30841-1556

0.200000 0.3993470.022844 0.149879 -0.072759 0.071150 0.057909 -0.192962
-0.030343 -0.0293330.130105 0.008301 0 3031 1556

0.300000 0.59901210.034419 0.147642 -0.057601 0.054409 0.057525 -0.133328
-0.027795 -Q0.033168 0.127229,-0.041462,0 0288 11554

0.40000 0.798681 0.045918 0.140931 -0.063664 ,0.058594 0.056375 -0.117064
-0.031617 ,-0.034446 0.123713 !0.028987 0 0 285 11551

0.500000 0.998363 0.057187 0.138694 -0.042443-0.050224 0.055224 -0.100800
-0.037988 -0.044672'0.115724 -0.071750 0 0 277 11551

0.600000 1.198058 0.068226 0.143168 -0.0485060.048131 0.055224 -0.062850
-0.037988'-0.037002 0.119559 -0.083995 0 0 280 1 1552

0.700000 1.397754 0.079265 0.147642 -0.063664 0.060687 0.055608 -0.095378
-0.049454--0.031889 0.123074 -0.073638 0 0 274 1 1555

0.800000 1.597444 0.090391 0.154353--0.051538 0.056502 0.056758 -0.122485
-0.058373 -0.034446 0.124672 -0.117965 0 0 276 1 1553

0.900000 1.797122 0.101727 0.161064 -0.051538 0.048131 0.058676-0.127906 -

-0.053277 -0.029333 0.132022 -0.141904 0 0 276 1 1559
1.000000 1.996778 0.113455 0.163301 -0.066696 0.050224 0.060210 -0.138749

-0.040536 -0.017829 0.141609 -0.105188 0 0 268 1 1558

Figure A.2 One second excerpt of 10 Hz telemetry replay file

and time tag. Color objects can also be displayed. Color objects are a special object

type which control the RGB (red green blue) values of geometric objects such as lines

and walls which follow. Operator viewpoint and reference point control are provided

through dials and sliders for Height between viewpoint and reference point, Range in

the x-y direction, Azimuth between viewpoint and reference point in the x-y plane, and

viewpoint Twist angle. With a little practice users can move with ease throughout the

environment.

Control panel function buttons are also provided. The Sonar button toggles a

plot display of sonar data versus time for left, right, forward and depth transducers.

Reset returns the screen to its initial settings. Snapshot takes a black and white picture

of the pool and allows the user to then select a small portion to be saved as a figure in

139

Silicon Grap4icsInc. rgb format ("snapshot.rgb") andEncapsulated Postscfiptformat

("snapshoteps"). The-S~pshot featureis very handy for creating figures to be

impoted by Frame or Wordperfect,, but graphics files are very large so this feature

Should be used sparingly. More information on snapshot execution -canbe found in

the shellscript "screensnapshot". Replay executesor resumes-the. curient telemetry

replay- file,, and Step single steps through the telemetry replay fileone xecord at a time.

Telemetry data may be viewed by selecting the AUV object orpopping up the Unix

cotiiiiid line window over the screen display. Exitquits the simulation program.

Buttons are selected by positioning the mouse cursor and holding down the left mouse

button. Button response is indicated by a button color change.

The right mouse button selects a multiple level menu. Menu control is provided

for viewpoint, reference point, object position, rotation and scaling, and special

simulator features such as lighting model, real-time playback toggle and system usage

performance meter.

The dials and button box are also operative. Buttons 1-2-3 and 5-6-7 move

viewpoint x-y-z coordinates towards or away from the reference point respectively.

Button 4 is Reset and button 8 is Exit. Dial 6 selects the next or previous object.

Dials 4-2-0 pan viewpoint and reference point together in x-y-z directions respectively.

Dials 7-5-,3-1 are Height, Range, Azimuth and Twist respectively. Dial and button

physical configurations are shown in Figure A.3.

3. LABORATORY GESPAC EXECUTION

NPS AUV control loop software can be compiled and executed on network

node auvsiml, the laboratory Gespac version of the NPS AUV microprocessor.

Figures A.4 through A.8 show a sample logon, compilation and execution of

NPS AUV control software program loop.c. Following execution the resulting

telemetry replay file "d.d" is transferred to a graphics workstation where it can be

replayed by the graphics simulation program auvsim.

140

Select Height V1iewpoint+
+X +Y(+Z Reset-

Pan X Range1 2 3 4

Pan Y Azimuth -X -Y -Z Exit
Viewpoint-

Pan Z Twist
Figure A.3 NPS AUV Integrated Simulator dials and buttons

141

Fle auvsim.log: sample execution of AUV, softwre on
Iris Lab AUV Gbspac running O-9.on '9 JAN 91

gemini:/n/gemini/w6rk/brutzman >telnet auvsiml
Trying 131.120.1.40 ...
Connected to auvsiml.cs.nps. navy.mui.
Escape character is 'a]'.

OS-9/68K V2.3 Gescomp 84xx/86xx - 68020 92/01/09 00:32:05

User name?: brutzman
Password:
Process #06 logged on 92/01/09 00:32:13
Welcome!

****** WELCOME TO PROFESSIONAL OS-9/68k V2.3 *

* S C /HO Hard Disk #1 (20 Mb) *
* 0 *

* Y N /DO = Floppy Disk #1 (FDC-3)
* F *

* S I *
* G *

* T U /TERM RS-232 Interface to Terminal *

R *
auvsiml * E A /TI Auxiliary Serial Port #1 *

* T *
NPS AUV * M I [/P = Centronics-type Printer] *

* 0 *
Integrated * N *

* *

Simulator ******** ***

$ dir
Directory of . 00:32:22

RC AUV AUVRUN AUV OLD BYRNES
C CEE CMDS DEFS ETC
INET INSTALL LIB MACROS MISC
MIT MSDOS OS9boot Read-Me
Release.notes
SUBMODS SYS SYSSRC TEMP WL
d.d dir.fix ev0.txt hello.c junk
loop loop.c lp.d macph mkrom.bat
readme.utils romlist.sho startlan startlan.ori startup
startup.bak startup.cc startup.env startup.full startup.ng
startup.ok startup.old startup.ori t2.19200 t2.9600

Figure A.4 Script of laboratory GESPAC execution of NPS AUV control
loop software (part 1)

142

*- comments start with an asterisk

* loop.c is the closed-loop cbntrol, sbftware usd in the. AUV

$* p.d is the run geometry data file

cc loop.c -k2f

Opp:
c68:
068:
r68:
168:

$ * Now execute loop. Initial values were values read from lp.d data file.'

$ * startdwell is the only value that matters right now since it is the

$ * initial delay time.

$ loop
10.000000 0.000000 2.000000
30.000000 0.000000 2.000000
55.000000 3.140000 2.000000
80.000000 3.140000 2.000000
100.000000 6.280000 2.000000
Input start-dwell
I
Input kpsi and k r
2.5
.5
Input k_z, ktheta, and k q
-1.1
3.5
2.5
Input k speed and kispeed
4.0
0.5
Input speed-limit from 1.0'to 3.0 feet/sec
1.5
Input rpm from +-200.0 to +-650.0, type 400.0
400.0
Position AUV for Directional Gyro Offset Measurement
Rate Gyro zero measurement
Hit Any Key When Ready

pitch 0 = 0
roll U = 0
roll-rate 0 = 0
pitcH rate 0 = 0
yaw rate 0--= 0
Z_valO =-0
goffset = 0.097793
Starting
Error #000:002 keyboard quit

$ * program exit was accomplished using control-E after about 20 seconds

Figure A.5 Script of laboratory GESPAC execution of NPS AUV control
loop software (part 2)

143

AUV out~ut file isd.d and 0&ntains

* $'~ the -usual f loatiig- point: stki6 vdctor dt 10.]4z,.

$* First paramfeter is clock time.

* $- list -d.d
0.000000 'O0C (00'-O-.0006O0 0.06000 0.000000.0,;6000 -0.000000- ,0.600000
-0. 000000 0.000000 -0.'00000,- .200000 0.000000- 0.000000 :0.,000000 576.4 50000 -

-8.479200, -8.4-79200-'
0.10000 0.0,00000' 0.000000 0.000000, 0.000006 0.,000000 -0..000000AA000000
0.00006-00 0.00000OOO -0.000000 2.200000 0-.000000' 10.000000 0.'000000' 603.900000
-8.479200 --8.479200-
0.200000 0;000000 0.000000 0.000000-'0.600000 0-.000000; -0.000000 -0.000060
0.000000 0;000000 -0M00000 2.200000- 0.000000 ;o.oooooo0 0.000000. 831-.350000,

,- 8.479200 -8.47'9200
0.300000,0.000000 0.600000 0.0000000000000oo 0.00000 -0.00000 oooooo'
0.000000 0.000000 -0.000000 2;200000 0.000000. 0.000000'0.000000 .650.000000'-
-8.479200 -8.479200
0.,400000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000000 0.0000
0.000000 0.000000 70.000000 2.20000 0.0000000.00000 0.000000 650.000000
--8.479200 -8.479200
0.500000 0.000000 0.000000 0.000000 0.000000 0.000000 -0;.006000 0.000000
0.000000 0.000000,70.000000 2.200000 0.000000 0,.000000,.0.000000 650.000000
-8;479200 -8.479200
0.600000 0';000000 0.000000 -0.000000 0.000000- 0.000000 -0'.000000 0.000000
0.000000 0.000000- -0.000000 2'.200000 '0.000000 0.000000-'0.000000 650.000000
-8.479200 -8.479200-
0.700000 0.000000 0.000000' 0.000000-0.00000 0.00000 -0.0000 0.00000
0.000000 0.000000' -0,.000000 2.200000 0.000000 0.000000 0.000000 650.000000
-8'.-479200 -8,A-79200
0,800000 P.000000 0,-000000 0.000000 0.000000 0,000000 -0.000000 0.000000,
0.000000 0.000000 -0.,000000,,2.200000-'0.000000 0.000000'0.000000 650.000000
-8.479200 -8.479200
0.9000' .000000 0.000000,0.000000 0.000000 0.000000 -0.000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 0.000000 650;000000,
-8.479200 -8.479200
1.000000 0.000000-0,000000 0.000000 0.000000 0.000000 -0.000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000.0.000000 650.000000.
-8.479200 -8.479,200
1.100000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000000 0.000000
0.000000 0.000000 "0.000000 2.200000 0.000000 0.000000 0.000000 650.000000
-8.479200 -8.479200
1.200000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 0.000000 650.000000
-8.479200 -8.479200
1.300000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 0.000000 650.000000
-8.479200 -8.479200
1.400000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000000 0.000000
0.000000 0.000000 -0.000000 2.200000 0.000000 0.000000 0.000000 650.000000
-8.479200 -8.479200
1.500000 0.000000 0.000000 0.000000 0.00
$ Read 1/0 error - Error #000:002 keyboard quit

$ * Control-E again used to break out

Figure A.6 Script of laboratory GESPAC execution of NPS AUV control
loop software (part 3)

144

* Now Iet's.,send dd- to the Iris for use by -the integrated simulator

ftp irisl
onnected to graVyl.;cs.nps.navy.mil.
220 graVyl FTP server (IRIX Version 5.46 Aug 6 1990 10:17) ready.
N ame (gravyl.cs.nps.navy.ml:brutzman):
assword (gravyl.cs.hps.navy.mil:brutzman):
31 •Password required for brutzman.
30 User brutzman logged- in.

-onnected to gravyl;cs.nps.navy.mil.
ode:-stream Type: ascii Form: non-print Structure: file
erbose: on -Bell: off Prompting: on Globbing: on
ash mark printing: off Use of PORT commands: on

ftp> put d.-d labtest.d
200-PORT command successful.
150 Opening-ASCII mode data connection-for 'labtest.d'.
226 Transfer complete.
2575 bytes sent in 0.10 seconds (25.15 Kbytes/s)
ftp> quit
221 Goodbye.

$ telnet irisl
Trying 131.120.1.20...Connected to gravyl.cs.nps.navy.mil.
Escape character is '^]'
capture closed.

IRIX System V.3 (gravyl)

login: brutzman
assword:
IRIX System-V Release,3.3.1 gravyl
Copyright (c) 1988,1989,1990 Silicon Graphics, Inc.
l1 Rights Reserved.

** ** * **** ****** ** * ** **** ** **** ** * ***

SCHEDULED DOWN TIME
Backups -- Wednesdays 0800-0900

**** * ** ** * ***** *** * *** ***** ** ** ** ** *

gravyl:/n/gravyl/work/brutzman
% ls
AUV backup.pool graphics nps tape.c
GA bay 20m data lab.d off temp
WorkSpace clips labtest.d pline titler
autopilot.c d.d laser pline.c
auv dumpster laser2 pool m35.auv
auvIll ff laser2h preyTew
auv long term g laserh robotics

gravyl:/n/gravyl/work/brutzman
% logout
onnection closed by foreign host.

Figure A.7 Script of laboratory GESPAC execution of NPS AUV control

loop software (part 4)

145

-SNote file d~d was s;uccessfully transferied- -as file iab~test-;d to the

* lsont and -ued back and forth as well as nested.

-* Lack of analog/digital cards did not prevent loop.c fr6m--copntiduing.

$ * this script file is -saved as auvsim.iog

-$ Due to a shell glitch, two '-logout' commands are -needed to exit OS-9.

$logout-
brutzman> logout
Connection closed by foreign host.

- emini: Inlgeminr/worklbrutzrnan -

Figure A.8 Script of laboratory GESPAC execution obf-NPS'AUV control
loop software (part 5)

146

APPENDIX B. NPSAUV GRAPHICS SIMULATION PROGPAM-SYNOPSIS-

The NPS AUVIntegrated Simulator graphic simulatiotn program is-written-in

ANSI-C to run on-Silicon Graphics Inc. Iris workstations. 'Numerous calls are made

to GL Graphics Library routines. Platform-dependence andlength (5200 lines of

code) makes complete reproduction of the source -progam and support files

impractical. Source programs are.summaried in this appendix and-are available via

Internet as described in Appendix F.

1. GRAPHICS SIMULATION PROGRAM STRUCTURE

The graphics simulation programa has a structure typical of most Iris applications.

Graphics functions are initialized, data is initialized and a World view is drawn-from

the~default, viewpoint. A-main graphics loop is then repeated:indefinitely which-reads:

user inputs (if any), redraws the world view and outputs updated values. Screen

update rate is dependent on workstation capabilities and the changing complexity of

the world view being drawn. Figure B.1 shows the basic simulation graphics loop and

summarizes all major furitions.

2. NPS PANEL DESIGNER

The NPS Panel Designer (NPSPD) is used to provide a user-friendly control

panel interface (King Prevatt 90). NPSPD readshigh-l8vel text files that specify

layout and functionality of a wide variety of interface icons such as meters, dials,

knobs, buttons etc. NPSPD then automatically generates "C" source code functions

that can be tied to the target application through Makefile entries and define

statements. Although initial setup is difficult, use of NPSPD permits extensive

changes to the user interface. Subsequent modifications using NPSPD are rapid and

convenient, permitting flexible development of the user interface during simulator

147

Initialize all values and control panel

Transfer values from control panel
Transfer values from mouse/dials/buttons
Process commands: read file, replay,

change viewpoint or meter values,
screen snapshot, reset, exit etc.

Draw background environment (pool)

If replay in progress:
read AUV posture from replay file

ause/skip record if in real-time mode

Loop for all objects, including AUV
rotate/translate/scale object
draw each individual object
I

Screen buffer swap (latest in foreground,
background ready for redraw)

Transfer updated values to control panel
Redraw control panel

Figure B.1 NPS AUV graphics simulation program

148

development. NPSPD specifications and examples are found'in (King PreVatt 90) and

(Jurewicz 90).

3. GRAPHIC OBJECT MODELING USING OBJECT FILE FORMAT (OFF)

Creation and modeling of complex graphic objects such as underwater mines or

vehicles can be extremely tedious if only using GL Graphics Library geometric

primitive function calls. Object File Format (OFF) has been developed at NPS to

encapsulate most of the functionality of GL Graphics Library lighting, drawing and

texturing function calls in a manner that supports modeling and manipulation of

high-level graphics objects (Zyda 91). Use of OFF objects greatly simplifies treatment

of individual objects modeled in a simulated world.

149

APPENDIX C. NPS AUV SONAR CLASSIFICATION-SYSTEM SOURCE

CODE

AUV Sonar Expert System

Filename: auvsonar

Purpose: Batch file for auvsonar.clp which resets and executes the
AUV sonar contact classification expert system.

Paper: "Autonomous Underwater Vehicle Sonar Classification using
Expert Systems and Neural Networks"

IEEE OCEANS '92 Conference, Newport, Rhode Island

Authors: Don Brutzman, Mark Compton and Dr.-Yutaka Kanayama

Date: 24 November 91

Execution: unix> clips5 unix> clips5
CLIPS> (load auvsonar.clp) CLIPS> (batch auvsonar)
CLIPS> (reset) CLIPS> (run)
CLIPS> (run)

Clear & close files in case they were left open during previous execution

(clear) ; clear all facts and rules
(close rangefile) ; Close AUV-recorded pool test data input file
(close plotfile) ; Close xy coordinate file used for graph output
(close auvfile) ; Close expert system classification output file

(load auvsonar.clp) ; Load in AUV Sonar Classification Expert System
(undefrule oldareal)

(undefrule oldarea2)

(reset) ; Initialize agenda and assert initial facts

;;:;: (run) ; Execute AUV Sonar Classification Expert System

150

AUV Sonar Expert System

; Filename: auvsonar.clp

; Purpose: Define data templates, rules, functions and'user interface
for -the AUV sonar contact classification expert system.

• Paper: "Autonomous Sonar Classification using Expert Systems"
IEEE'Oceanic Engineering Society
IEEE OCEANS '92 Conference, Newport, Rhode Island

Authors: Don Brutzman and Mark Compton
Advisor: Dr. Yutaka Kanayama

Date: 1 March 91

Comments: This expert system takes data files generated by the NPS AUV,
uses sonar returns and AUV position to generate locations of
sonar contacts, perform-two-dimensional linear regression to
build line segments, combine segments into polyhedrons and
then determines the probable classification of each polyhedron.

Language: CLIPS "C" Language Integrated Production System

Execution: unix> clips5 unix> clipsS
CLIPS> (load auvsonar.clp) I CLIPS> (batch auvsonar)
CLIPS> (reset) I CLIPS> (run)
CLIPS> (run)

Execution 'dribble' files ae saved in auvsonar.log

References: Sonar Data Interpretation for Autonomous Mobile Robots_,
Yutaka Kanayama, Tetsuo Noguchi, and Bruce Hartman,
unpublished paper.

History: original program development for CS4311 Expert Systems
taught by Dr. Kanayama.

Caveat: The NPS pool coordinate system is the world reference used
where x is pool length, y is pool width, and . is pool depth.

Status: Initial development complete for object classification.
Full pool depth used for pool object outputs.
Initial offset option for centering pool data included.
Verbose output option and excess data retraction completed.
Gyro error/gyro drift rate evaluation & correction implemented.
Centroid and cross-sectional area calculations done for objects.
Top-level classification of objects using area is possible.
Mine classification implemented satisfactorily.
Excessively narrow objects are reclassified as walls.

; Data Type Deftemplates

; Data template and slot names correspond to AUV Data Dictionary definitions.
; Data template names have their first letter capitalized.
; Variable names are all lower case.
; CLIPS data types and symbols used in symbolic slots are capitalized.

(deftemplate Range data

(field time ; time is positive, set by AUV
(type NUMBER)
(default 0) ; time zero is used for dummy facts
(range 0 ?VARIABLE))

(field x ; element of Point 3D AUV data type
(type NUMBER) ; dead reckoning eitimate of travel
(default 0) ; relative to start position
(range 0 ?VARIABLE))

(field y ; element of Point_3D AUV data type

151

(type IIUMBER) J; dead reckoning estimdte of travel
(default 0) ; relative to startposition'
(range 0 ?VARIABLE))-

(field z ; element of Point 3D; AUV data type
(type NUMBER) ; source: pressure-sensing depth cell
(default 0) ; which may'be inaccurate when shallow
(range 0 ?VARIABLE))

(field phi ; element of Attitude=3D AUVdata type
(type, NUMBER) ; in radians
(default 0)) ; (roll)

(field theta ; element of Attitude_3D AUV data type
(type NUMBER) ; in radians-
(default 0)) ; (pitch)

(field psi ; element of Attitude 3D AUV data type
(type NUMBER) ; in radians. Note-caveat on pg. 1
(default 0)) ; (yaw)

(field p ; element of Point 3D AUV data type
(type NUMBER) ; in radians/sec-
(default 0)
(range 0 ?VARIABLE))

(field q ; element of Point 3D AUV data type
(type NUMBER) ; in radians/sec-
(default 0)
(range 0 ?VARIABLE))

(field r ; element of Point 3D AUV data type
(type NUMBER) ; in radians/sec-
(default 0)
(range 0 ?VARIABLE))

(field delta-dive planes ; change in bow/stern planes position
(type NUMBER) ; in degrees
(default 0)
(range 0 ?VARIABLE))

(field delta rudders ; change in rudder planes position
(type NUMBER) p in degrees
(default 0)
(range 0 ?VARIABLE))

(field range a ; 0-4095 range units correspond to
(type NUMBER) ; 0..30m pool or 0..300m ocean.
(default 0)
(range 0 ?VARIABLE))

(field range b ; Up to 4 transducers can be included.(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field rangec (type NUMBER)

(default 0)
(range 0 ?VARIABLE))

(field range d (type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field valid a ; Validity signal from sonar hardware(type INTEGER)
(default))

(field valid-b
(type INTEGER)
(default))

(field valid c
(type INTEGER)
(default 1))

(field valid~d
(type INTEGER)
(default 1))

(field speed : AUV speed from flow sensor
(type NUMBER)
(default 0.0))

(field processed ; set TRUE when point is asserted,
(type SYMBOL) ; FALSE until then.
(default FALSE)

(allowed-values TRUE FALSE))

(deftemplate Objectdata

(field detection-time ; time is positive, set by AUV
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field latesttime

152

(type NUMBER)
(default 0)
(range 0 ,?VARIABLE))

(field valid
(type INTEGER)
(default 0))

(field x ; object center
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field y ;, object center
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field z ; object center
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field object
(type INTEGER)
(default 0)
(range 0 9))

(field length
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field height
(type NUMBER)
(default 0)
irange 0 ?VARIABLE))

(field width
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field confidence ; normalized
(type FLOAT)
(default 0.0)
(range 0.0 1.-0))

(deftemplate Point

(field time ; time is positive, set by AUV
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field x ; element of Point 3D AUV data type(type NUMBER)

(default 0)
(range 0 ?VARIABLE))

(field y ; element of Point_3D AUV data type(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field z ; element of Point_3D AUV data type
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field valid
(type INTEGER)
(default 0))

(field status
(type SYMBOL)
(default NEW)

(allowed-values NEW ACTIVE INVALID ENDPOINT USED))

(deftemplate Regressionline

(field start ; matches time of start point
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field end ; matches time of end point

153

(type NUMBER)
(default 0)
(range 0 ?VARIABLE))Y

(field r
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field orientation ; normaliied degrees
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field correlation
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field status
(type SYMBOL)
(default NEW)

(allowed-values NEW CURRENT VALID USED USED FOR AREA))

(deftemplate Node

(field time
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field x
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field y
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field z
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field confidence
(type FLOAT)
(default 0.0)
(range 0.0 1.0))

(deftemplate Edge

(field start ; slot values are times corresponding to data
(type FLOAT))

(field end
(type FLOAT))

(field averagez
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field status
(type SYMBOL)
(default USED)

(allowed-values USED USEDFOR AREA))

(deftemplate Curve ; not yet implemented

(field time
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field node ; slot values are times corresponding to data
(type FLOAT))

(field edge
(type FLOAT))

(field shape

154

(type SYMBOL))

(deftemplate Polyhedron

'(field start. ;*time of the initial node/edge/cturve element
(type NUMBER)
(default 0),
(range 0 ?VARIABLE))

(field end I ; time of most recent node/edge/curve element
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field startx
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field starty
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field startz
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field centroidx
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field centroidy
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field centroidz
(type NUMBER)
(default 0)
(range 0 ?VARIABLE))

(field sidecount
(type INTEGER)
(default 1)
(range 1 ?VARIABLE))

(field sidecounterl
(type INTEGER)
(default -1)
(range -1 ?VARIABLE))

(field sidecounter2
(type INTEGER)
(default -1)
(range -1 ?VARIABLE))

(field area
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field height
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field accuracy
(type FLOAT)
(default 0.0)
(range 0.0 ?VARIABLE))

(field confidence
(type FLOAT)
(default 0.0)
(range 0.0 1.0))

(field trait
(type SYMBOL))

(field status
(type SYMBOL)
(default ACTIVE)

(allowed-values ACTIVE COMPLETE USED FOR AREA))
(field classification

(type SYMBOL)
(default WALL)

(allowed-values NEW CURRENT WALL OBJECT MINE SWIMMER UNKNOWN
SEA-MOUNT SUBMARINE SHIP I E SKIMMERPUKE
BIOLOGICS LOTSOFBIOLOGIC§) T

155

Initialization of Flag Facts

(deffacts initial-flags

(start-new-window-flag) ; commence parametric -regression process

(retract-excess-data TRUE) ; any other value saves excess data

(location pool) ; NPS swimming pool test environment.

(location ocean) ; alternative environment

Global Constants

(defglobal ?*minimum_points_in edge* - 5) ; hard coded into regression defrules

(defglobal ?*transducer a* - 1); forward transducer corresponds to slot range a
(defglobal ?*transducer-b* - 2); left transducer corresponds to slot range~b
(defglobal ?*transducer-c* - 3); right transducer corresponds to slot range c
(defglobal ?*transducer-d* - 4); depth transducer corresponds to slot range-d

(defglobal ?*feetpersonar unit* - 0.02398) ; 0-4095 range units correspond to
0..30m pool or 0..300m ocean.

(defglobal ?*correlation confidence weight* - 1)
(defglobal ?*validityconfidence welght* - 1)

(defglobal ?*cl* - 3.00) ; max # standard deviations a point can be out
(defglobal ?*c2* - 2.00) ; max offset distance (feet) allowed from line
(defglobal ?*c3* - 0.066) ; min regression ellipse thinness requirement

; define default line/wall color strings
(defglobal ?*colorl* - "Color 0 255 78 1.0 0 255 78"); detected edge
(defglobal ?*color2* - "Color 200 255 150 0.7 200 255 150"); inferred edge
(defglobal ?*color3* - "Color 0 78 255 0.5 0 78 255"); hidden edge

(defglobal ?*min wall length* - 1.0) ; min allowable individual edge length
; to be output as a WALL

(defglobal ?*max edge distance* - 7.0) ; max allowable distance between edges
; for edge-joining/polyhedron building

(defglobal ?*max edgeangle* - 10.0) ; max allowable angle between edges
; for edge-joining/WALL building

(defglobal ?*wall thinnessratio* - 0.1) ; used to reclassify long skinny object
as WALL

Global Variables

(defglobal ?*n* = 0.0) ; m 00
(defglobal ?*sumx* - 0.0) ; m 10
(defglobal ?*sumy* - 0.0) ; m 01
(defglobal ?*sumxy* - 0.0) ; m 11
(defglobal ?*sumxx* - 0.0) ; m 20
(defglobal ?*sumyy* - 0.0) ; m 02

(defglobal ?*meanx* = 0.0) ; mu x
(defglobal ?*meany* = 0.0) ; mu y

(defglobal ?*sigmaxx* - 0.0) ; M 20
(defglobal ?*sigmaxy* = 0.0) ; M 11
(defglobal ?*sigmayy* = 0.0) ; M 02

(defglobal ?*phi* = 0.0) ; regression line orientation
(defglobal ?*r* - 0.0) ; regression line distance from origin

(defglobal ?*M-major* = 0.0) ; Moment around ellipse major axis
(defglobal ?*M-minor* = 0.0) ; Moment around ellipse minor axis

(defglobal ?*d-major* = 0.0) ; diameter on ellipse major axis
(defglobal ?*d-minor* = 0.0) ; diameter on ellipse minor axis

156

(defglobal ?*rho* =0.0) ; ratio of major to- minot axis diameters,
(defglobal ?*delta* --0.0) ; residual of a point
(defglobal ?*sigma* - 0.0) ,; standard deviation

(defglobal ?*projection-x* = 0.0) ; x projection-of point i on major axis
(defglobal ?*projection-y* = 0.0), ; y projection of point i on major axis

(defglobal ?*minx* = 145) ; for plot/graph boundaries
(defglobal ?*maxx* = -15)

(defglobal ?*miny* - -50) for plot/graph boundaries
(defglobal ?*maxy* - 110)

(defglobal ?*minz* = 0.0) ; for the currently active edge only
(defglobal ?*maxz* = 0.0) ; for the currently active edgeonly

(defglobai ?*defaultz* = 2.0) ; default pool depth to be used for objects
of unspecified or indeterminate depth

(defglobal ?*offsetx* = 0.0) ; displacement added to (x, y, z) positional
(defglobal ?*offsety* & 0.0) ; data to account for distance of the AUV
(defglobal ?*offsetz* - 0.0) ; from the origin (i.e. corner) of the

NPS pool' coordinate system

(defglobal ?*time* - 0.0) ; used to measure execution time

(defglobal ?*out* - stdout) ; verbose output default to stdout
; otherwise ?*out* is reset to nil

(defglobal ?*gyroerror* - 0.0) ; User-provided gyro error (degrees)
(defglobal ?*newgyroerror* -.0.0) ; Expert system gyro error (degrees)
(defglobal ?*gyroerrortime* - 0.0) ; Average time of first wall found, used

; as input to drift rate computation

(defglobal ?*gyrodriftrate* = 0.0) ; User-provided drift rate
(defglobal ?*newgyrodriftrate* = 0.0) ; Expert system drift rate

(defglobal ?*number-of.fields* - 17) ; read only actual # of input fields

A sample fact (for syntax training use only!)

(deffacts rangel (Range-data (time 0)
(x 2) (y 3) (z 4)
(phi 5) (theta 6) (psi 7)
(p 8) (q 9) (r 10)
(delta dive planes 11)
(delta-rudders 12)
(range-a 13) (valid a 1)
(range-b 15) (valid b 1)
(speed-17) (processed TRUE))

Functions

atan2 function matches C language and class text syntax.
Calling order: (atan2 y x)

(defmethod atan2 ((?y NUMBER) (?x NUMBER (> ?x 0)))
(atan (/ ?y ?x)))

(defmethod atan2 ((?y NUMBER (> ?y 0)) (?x NUMBER (< ?x 0)))
(+ (atan (U ?y ?x)) (pi)))

(defmethod atan2 ((?y NUMBER (< ?y 0)) (?x NUMBER (< ?x 0)))
(- (atan / ?y ?x)) (pi)))

(defmethod atan2 ((?y NUMBER (> ?y 0)) (?x NUMBER C- ?x 0)))
(/ (pi) 2.0))

(defmethod atan2 ((?y NUMBER (< ?y 0)) (?x NUMBER (= ?x 0)))
(U (pi) -2.0))

(defmethod atan2 ((?y NUMBER (- ?y 0)) (?x NUMBER (< ?x 0)))
(pi))

157

(defmethod atan2 ((?y NUMBER (=?y 0)) (?x NUMBER (-'-?x 0)))
0.0)

(deffunction normalize Ox); x in degrees, resulting range (0- .. 360)

(bind ?norm ?x)
(while (< ?norm 0.0) (bind.?norn (+ ?norm 360.0)))
(while >-?norm 360.0) (bind ?norn -?om300)
?norm C nrn300)

(deffunction normalize2 (?x) ;x in degrees, resulting range (-180 .. 180)

(bind ?norn ?x)
(while (< ?norm -180.0) (bind ?norm (+ ?norm 360.0)-))
(while (>= ?norn 180.0). (bind ?norm (- Thorn 360.0)))
?norm

(deffunction avg (?nurmberl ?number2)
UI (+ ?numberl ?nurmber2) 2.0))

(deffunction degrees (?x) ;x in radians

/(?x 180.0) (pi))

(deffunction radians (?x) ;x in radians

U*(?x 180.0) (pi))

Boolean function to ask a yes/no question

(deffunction yes-or-no (?question). ;'?question' is the question string

(format t "%n%s? 11 ?question) ; ask the question
(bind ?answer (lowcase (syn-cat (read))))

(while (and (neq ?answer yes) (neq ?answer y) (neq ?answer yep)
(neq ?answer yeah) (neq ?answer ye) (neq ?answer yea)
(neq ?answer no) (neq ?answer n)
(neq ?answer nope) (neq ?answer nah))

(format t 11%n Please Answer yes or no: 11)
(bind ?answer (lowcase (sym-cat (read)))))

(if (or (eq ?answer yes) (eq ?answer y) (eq ?answer yep)
(eq ?answer yeah) (eq ?answer ye) (eq ?answer yea))

then TRUE
else FALSE)

(deffunction distance (?xl ?yl ?zl ?x2 ?y2 ?z2)

(-?zl ?z2) (-?zl ?z2))

Triangle S and area calculation functions

(deffunction S (?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

158

; CW6 triples are positive A CW triples are. negative, matching- conventi6ns.

(bind ?tfianglearea
(* 0.5 (- (* (- ?node2x ?nodelx) (- ?node3y ?nodely))

a(- ?node3x ?nodelx) C- ?node2y ?nodely)))))?trianglearea)

(deffunction area (?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y)

area values are always positive, matching conventions.

(bind ?trianglearea
(abs (* 0.5 C- 1* (- ?node2x ?nodelx) C- ?node3y ?nodely))

(* (- ?node3x ?nodelx) (- ?nde2y ?nodely))))))
?trianglearea)

;- Expert system start and data file reading rules

(defrule get-initial-expert-system-parameters-and-open-range-file

(declare (salience 100))
(initial-fact)

0>

(dribble-off)
(system "my -f auvsonar.log auvsonar.log.bak")
(dribble-on auvsonar.log)

(printout t crlf crlf "Name of range data file to open? ")
(bind ?filename (read))
(open ?filename rangefile "r") -

(printout t "Opened range data file " ?filename crlf)

(printout t crlf)
(if (yes-or-no "Are there more than 17 fields per Range data record")
then (printout t crlf "Enter number of data fields per record: ")

(bind ?*number of fields* (read))
(while (or (< 7*nUmber of fields* 17) (> ?*number of fields* 20))

(printout t cr1T "Enter a value from 17..2U: ")
(bind ?*number of fields* (read))
(printout t crlf Filf)))

Determine output device for trace statements using 'format ?*out*'
(printout t crlf).
(if (yes-or-no "Do you want verbose output onscreen during analysis")
then (bind ?*out* stdout)
else (bind ?*out* nil))

(printout t crlf)
(if (yes-or-no "Do you want to input gyro error and gyro drift rate")
then (printout t crlf "Enter gyro error (degrees): ")

(bind ?*gyroerror* (normalize2 (read)))
(printout t crlf "Enter gyro drift rate (degs/hr):
(bind ?*gyrodriftrate* (read)))

(printout t crlf)

(printout t crlf)
(printout t crlf "Enter offset distance to be added to X positions to ")
(printout t "account for the initial AUV displacement from pool corner: ")
(bind ?*offsetx* (read))
(printout t crlf)

(printout t crlf "Enter offset distance to be added to Y positions to ")
(printout t "account for the initial AUV displacement from pool corner: ")
(bind ?*offsety* (read))
(printout t crlf)

(printout t crlf "Enter offset depth to be added to Z positions to ")
(printout t "account for the initial AUV displacement from pool surface: ")
(bind ?*offsetz* (read))
(printout t crlf)

(printout t crlf "Saving previous files pool.graph and pool.auv:" crlf)
(printout t "my -f pool.auv pool.auv.bak")
(system "mv -f pool.auv pool.auv.bak")
(printout t crlf)
(printout t "my -f pool.graph pool.graph.bak")
(system "my -f pool.graph pool.graph.bak")

159

(printout t crlf)

(open "po0o.auv" auvfile "a")
(open "pool.graph" plotfile "a")

(printout auvfile crlf crlf
NPS AUV Sonar Classification Expert System"

(pool data " ?filename ")"

crlf crlft'crlf)
(printout auvfile crlf "All data values &£type specifications are "

"defined by the AUV Data Dictionary."
crlf)

(printout auvfilecrlf "All coordinate values are relative to the "
"NPS Pool Coordinate System."

crlf crlf crlf)
(printout iuvfile crlf "AUV,

?*offsetx* " " ?*offsety* " " ?*offsetz*
" (xyz distances from AUV start position to pool origin)" crlf)

(printout plotfile " 105.0 95.0 " crlf "\"NPS AUV Sonar Classification
"Expert system (pool data " ?filename ") \"
crlf)

(printout piatfile " 100.0 -30.0 " crlf "\"AUV start..origin offset values:
?*offsetx*
?*offsety*
?*offsetz* ""

crlf)

(printout plotfile=" 105.0 -40.0 " crlf "\"Parametric regression constants:
"cl=" ?*cl*

", c2-" ?*c2*
c3-" ?*c3*

crlf)

(printout plotfile " 0.0 0.0 " crlf ; pool boundary outline
" 127.0 0.0 " crlf
" 12740 67.5 " crlf

0;0- 67.5 - crlf
00 0.0 " crlf " \" \" "

crlf)

(printout auvfile crlf "Environment nps pool.off"
crlf "Replayfile " ?filename
crlf "Replaysize " ?*number of fields*
crlf) ; simulator replay filename/!ilesize initialization

(if (or (<> ?*gyroerror* 0.0) (<> ?*gyrodriftrate* 0.0)) then
(printout plotfile " 100.0 -20.0 " crlf "\"AUV gyro error =

?*gyroerror* " degrees, gyro drift rate =
?*gyrodriftrate* " degrees/hour \" ..
crlf))

(if (or (<> ?*gyroerror* 0.0) (<> ?*gyrodriftrate* 0.0)) then
(printout auvfile "gyroerror " ?*gyroerror- " degrees" crlf

"gyrodriftrate " ?*gyrodriftrate* " degrees/hour"
crlf))

(printout auvfile crlf ?*colorl* " Color scheme for regression lines "
crlf) ; primary default color scheme

(bind ?*time* (time)) ; start clock timer

(assert (check-file-flag))

(defrule check-range-file

?check-file <- (check-file-flag)
(not (range-file-closed-flag))

(retract ?check-file) ; don't read this file again until point is processed

(assert (first-element-read-file-flag = (read rangefile)))
first-element-read-file-flag will be asserted with first element from

the rangefile

160

(defrule skip-rarigefile-cor~ents ; keep reading the file until we get -a nu' 1 er

(declare (salience 100))
?first-ele=ent-read-file <- (first-element-read-file-flag ?file-elezent 6 BF
(test (not (numberp, ?file-elemermt)

(retract ?first-element-read-file)
(printout t ".") I
(readline rangefile) -;flush- co---ents through end-of-line
_(assert (check-file-flag))

(defrule -read-remainder-6f. -ra3nge-record

(declare (salience 100))
?fir -st-element-read-f ie <- (first-element-read-file-flag ?file-elemenit ~ EOF)
(test (numberp ?file-element))

(retract ?first-eliinent-7read-file)
(bind ?fieldl ?file-element)
(bind ?field2 (read ranigefile))
(bind ?field3 (read rangefile))
(bind ?field4 (read rangefile))
(bind ?fieid5 (read-rangefile))
(bind ?field6 (read rangefile))
(bind ?field7 (read rangefile))
(bind ?field8 (read rangefile))
(bind ?field9 (read rangefile))
(bind ?fieldl0 (read rangefile))
(bind ?fieldll (read rangefile))
(bind ?fieldl2 (read rangefile))
(bind ?fieldl3 (read rangefile))
(bind ?fieldl4 (read rangefile))
(bind ?fieldl5 (read rangefile))
(bind ?fieldlG (read rangefile))
(bind ?fieldl7 (read rangefile))

(if (>= ?*number of fields* 18) then (bind ?fieldl8 (read-rangefile)))
(if (>z- ?*nurnber -offields* 19) then (bind ?fieldl9 (read rangefile))
(if (>- ?*number~of_fields* 20) then (bind ?field20 (read ranigefile)))

;account for user-provided gyro error and gyro drift rate:

(bind ?totalerror (radians (+ ?*gyroerror*
(* *gyrodriftrate* UI ?fieldl 3600.0)))))

(bind ?heading (- ?field7 ?totalerror))

;Don't assert a point if it has no range value (non-return)
(if (or (> ?fieldl3 1) (> ?fieldl4 1) (> ?fieldl5 1) (> ?fieldl6 1)
then

(assert (Range data (tine ?fieldl)
(N ?field2)
(y ?field3)
(z ?field4)
(phi ?field5)
(theta ?field6)
(psi ?heading)
(p ?field8)
(q ?field9)
(r ?fieldl0)
(delta -divejplanes ?fieldll)
(delta-rudders ?fieldl2)
(range a ?fieldl3)
(rangeb ?fieldl4)
(range c ?fieldl5)
(ranged ?fieldl6)
(speed- ?fieldl7))))

(format ?*out* "1%nCompleted reading range record; data tine %3.1f' ?fieldl)
(assert (check-file-flag))

(defrule close-range-file

(declare (salience 100))
?first-element-read-file <- (first-element-read-file-flag EOF)

(retract ?first-element-read-file)

161

(close, rangefile)
(assert (range-file-closed-flag))
(assert (Point (status NEW))) ; dummy point so last line (if any) is saved
(printout t crlf "Closed the input range file." crlf)

Point position calculation functions

;Forward transducer (#1): reference frame is identical to AUV
;Left transducer (#2): p si - AUV psi +I PI / 2
Right transducer (#3): psi - AUV psi - PI /'2
;Depth transducer (#4): theta - AUV theta + PI / 2

(deffunction delta-x (?range ,phi ?theta ?psi)

(i (- Mt ransducer b* 1)
then (bind ?resUlt (* ?range (C(cos ?theta) (cos ?psi)))))

(if (- ?Mransducer b* 2)
then (b.~id ?restUlt (* ?range (Cos ?phi) (Cos C ?psi (/ (pi) 2)))))))

(it (- M*ransducer b* 3) ; INote caveat about yaw
then (bind ?resUlt (* ?range (C(cos ?phi) (Cos (+ ?psi UI (pi) 2)))

(if (-'?*transducer b* 4)
then (bind ?res~lt (* ?range (sin ?theta))))

?result)

-ideffunctiov deltay (?range ?phi ?theta ?psi)
(if (= ?*transducer b* 1)

then (bini ?res~lt (a ?range (C(cos ?theta) (sin ?psi)f))
-(if (- ?*ransducer b* 2)

then (bind 7re3Ult (* ?range ('(cos ?phi) (sin (-?psi UI (pi) 2)))))))
(if (-' ?t ra:'asducer b* 3) ; INote caveat about yaw

then (Dind ?reslL~ (C' ?range (C(cos ?phi) (sin (+ ?psi UI (pi) 2)))))))
(if (- ?*transducer b* 4)

then (bind ?res~1lt (* ?range (sin ?phi))))
?reault)

(d,)ffunction delta-z P~range ?phi ?theta ?psi)

then (b~ind ?res~lt (* ?range (sin ?theta))))
(if (- ?'ransducer b* 2)

then (bind ?res'ilt (- 0 (* ?range (sin ?phi)))))
(If (- ?-*"rrnsducer b* 3)

then Ibind ?res~lt (* ?range (sin% ?phi))))
(if (- ?'ransducer b* 4)

then (bind ?resUlt (* Trznge (* (cos Iphi) (cos ?theta)))))
?result)

Point building rule

(defrule build-point-frcm-raw-AUV-range-data

this rule currently handles only left transducer

(declare (salience 200))
?range-data<- (Range data (processed FALSE)

(time ?tim~e) (x ?U) (y ?y) (z ?z)
(phi ?phi) (theta ?theta) (psi ?psi)
(range-b ?range) (valid-b ?valid))

(test (<> ?*transducer-b* 0))

(bind ?range (* ?range ?*feet per sonar unit*)); unit conversion of range slot
(bind ?delta x (delta x ?rang-e ?plii ?theta ?psi))
(bind ?deltay((delta3y ?range ?phi ?theta ?psi))
(bind ?delta z (delta z ?range ?phi ?theta ?psi))
(if (and (> Titime 0) -(> ?range 1)) then ; only make valid data points

(assert (Point (time ?rime)
(x U ?xelta x))
(y (+?y ?deltayo)
(z =+?z ?delta-z)

162

Ivalid ?Valid)
(stat-us NEW))

print sonar return as 'o' and auv position as, '*'
(printout plotfile (-I-?x ?delta x. ?*offsetx*) 'II

(+ ?y ?deltay ?*offsety*) crlf "o" 6rlf)
(printout plotfile (+ -?x ?*offsetx*)

(+ ?y .?*offsety*) crlf " crlf)
include coordinate offsets

(modify ?range data (processed TRUE) (range b ?range))
(format ?*out* "%nAsserted and plotted a poTnt for data time %3.1f" ?time))

else ; a bogus point
(modify ?range-data (processed TRUE)' (range-b ?range))

Two-dimensional parametric regression line analysis rules

(defrule regression-line-sliding-window-start-criteri-a

(declare (salience 300))
?start-new-window <- (start-new-window-flag)
;Find the next 5 NEW points

?pointl <- (Point (status NEW) (time ?timel) (x ?xl) (y ?yl) (z ?zl))
?point2 <- (Point (status NEW) (time ?time2) (x ?x2) (y ?y2) (z ?zk))
?point3 <- (Point (status NEW) (time ?time3) (x ?x3) (y ?y3) (z ?z3))
?point4 <- (Point (status NEW) (time ?time4) (x ?x4) (y ?y4) (z ?z4))
?pointS <- (Point (status NEW) (time ?time5) (x ?xS) (y ?y5) (z ?z5))
(test (< ?tirnel ?time2))
(test (< ?time2 ?time3))
(test (< ?time3 ?timel)
(test (< ?time4 ?time5))

(retract ?start-new-window)
;These points are eligible and thus become ACTIVE
(modify ?pointl (status ACTIVE))
(modify ?point2 (status ACTIVE))
(modify ?point3 (status ACTIVE))
(modify ?point4 (status ACTIVE))
(modify ?point5 (status ACTIVE))
(bind ?*n* 5)
(bind ?*sumx* (+ 7xl ?x2 ?x3 ?x4 ?x5))
(bind ?*sumy* (+ ?yl ?y2 ?y3 ?y4 ?y5))
(bind ?'sumxy' (+ (w ?xl ?yl) ('?x2 ?y2)'* ?x3 ?y3) (* ?x4 ?y4) (* ?x5 ?y5)))
(bind ?*sumxx* (4 (?xl ?xl) ('?x2 ?x2) (* ?x3 ?x3) (* ?x4 ?x4) (* ?x5 ?x5M)
(bind ?*sUMYY* (+ ('?yl ?yl) ('?y2 ?y2) (' ?y3 ?y3) (' ?y4 ?y4) (* ?y5 ?y5)))
(bind ?*minz* (min ?zl ?z2 ?z3 ?z4 ?z5))
(bind ?*maxz* (max ?zi ?z2 ?z3 ?z4 ?z5))

(assert (Regression line (start ?timel) (end ?time5) (status NEW))
(format ?*out* 11%nGnRegression line sliding window start criteria met.")

(deffunction calculate-line-fit-and-update-global-variables (

global inputs; n, SUMX, sumy, sUMXY, sumxx, sumyy

(bind ?*meanx* (U ?*sumx* ?*n*))
(bind ?*meany* U1 ?*sumy* ?*m*))

(bind ?*sigmaxx' (?*sumxx* UI(?*sumx* ?*sumx*) ?*n*)))
(bind ?*sigmaxy' (?*sumxy* UI(?*sumx* ?*sumy*) ?*n*)))
(bind ?*sigmayyt (?*sumyy* I(?*sumy* ?*sumy*) ?*n*)))

(bind ?*Phi* (*0.5 (atan2 ('-2.0 ?*sigmaxy*) (- ?*sigmayy* ?*sigmaxx*))
); note paper's caveat re frame of reference of phi

(bind ?*r* (+ (* ?*meanx* (cos ?*phi*)) (* ?*meany* (sin ?uphi*))))

(bind ?term2 (sqrt (+ (~0.25 (-?*sigjmayy* ?*sigmaxx*)
(~?*sigmayy* ?*sigmaxx*))

(?*sigmaxy* ?*sigmaxy*))))

(bind ?*M-maJor* (-. U (4 ?*sigmaxx* 7*sigmayy*) 2.0) ?term2))
(bind ?*H-minor* (+ U1 (+ ?*sigmaxx* ?*sigmayy*) 2.0) ?term2))

(bind ?*d-maJor* (*4 (sqrt UI ?*M-minor* ?*n*))))
(bind ?*d-minor* (*4 (sqrt UI ?*M-maJor* ?*n*))))

163

(bind ?*rho* UI ?*d-minor* ' *d- maJor*)
(format ?*out* "1%nRegression line fit calculations complete.")

(defrule regression-lin~e-initial-segment-validity-check

(declare (salience 300))
;Get the NEW Regression.,line and 5 ACTIVE Points
?line <- (Regression iTne (start ?timel) (end ?time5) (status NEW))

?pointl <- (Point (time ?timel) (x-?xl) (y ?yl) (z ?zl) (valid ?validl))
?point5 <- (Point (time ?time5) (x ?x5) (y ?y5) (z ?z5) (valid ?valid5),)

?point2 <- (Point (time ?time2) (x Wx) (y ?y2) (z ?z2) (valid ?valid2))
(test (and (< ?timel ?time2) (> ?time5 ?time2)))
?point3 <- (Point (time ?time3) (x Wx) (y ?y3) (z ?z3) (valid ?valid3))
(test (and (< ?timel ?time3) (> ?tirne5 ?time3) (<> ?time2 ?time3)))
?point4 <- (Point (time ?tlme4) (x ?x4) (y ?y4) (z ?z4) (valid ?valid4))
(test (and (< ?timel ?tima4) (> ?time5 ?time4) (<> ?time2 ?time4)

(<> ?time3 ?time4l))

(calculate-line-fit-and-update-glohal-variables)

(bind ?*rho* (/ ?*d-minor* ?*d..major*))

(if (<?*rho* ?*c3*) ; Validity check: Test II equation (25)

then ;initial line segment IS valid
(modify ?pointl (status ENDPOINT)
(modify ?point2 (status USED))
(modify ?point3 (status USED))
(modify ?poirtt4 (status USED))
(modify ?point5 (status ENDPOINT)
(modify ?line (status CURRENT)

(r ?*r*)
(orientation -(normalize (degrees

(atan2 (- ?y5 ?yl) (-?x5 ?xlf))))
(correlation ?*rho*))

(format ?*out* "1%nRegression line initial segment validity check passed.")

else ;initial line Segment IS NOT valid
(modify ?pointl (status INVALID)) :window slides by one to the right
(modify ?point2 (status NEW))
(modify ?point3 (status NEW))
(modify ?point4 (status NEW))
(modify ?point5 (status NEW))
(retract ?line)
(assert (start-new-window-flag)) ;begin building a new winidow

(format ?*out* 11%nRegression line initial segment validity check failure.")
(format ?*out* "'en")

(defrule regression-line-window-expansion

(declare (salience 300))
;Get the CURRENT Regression line, start Point, end Point, and new Point
?current-line <- (Regression-line (start ?starttime) (end ?endtime)

(status CURRENT)
?new-point <- (Point (time ?newtime) (x ?newx) (y ?newy) (z ?newz)

(status NEW))
?start-point <- (Point (time ?starttime) Cx ?startx) (y ?starty) (z ?startz))
?end-point <- (Point (time ?endtime) (x ?endx) (y ?endy) (z ?endz))

(bind ?*delta* (+ (~(cos ?*Phi*) (- ?*meanx* ?newx))
((sin ?*phi*)(- ?*meany* ?newy)))) ; residual

(bind ?*sigma* (sqrt (/ ?*M-mino~r* (- ?'*n* 2)

(if (and (< ?*delta* (max (* ?*cl* ?*sigma*) ?*c2*)) ; Test I equation (23)
(< ?*rho* ?*c3*) ; Test 11 equation (25)
(> ?newtime 0)) ; ignore invalid points

then ;test passed, new point meets criteria
(modify ?new-point (status USED)) ; we just used this point
(bind ?*n* (+ ?*n* M)
(bind ?*sumx* (+ ?*sumx* ?newx))

164

(bind ?*6umy* (4 ? sumy* ?iiewy))-
(bind ?*sumxy* (4 ?*surnxy*'(* ?newx ?riewy)'))
(bind ?*sumxx* (+ ?*sumxx* (~?newx ?newx)))
(bind ?*sumyy* -0'- ?*sumyy* (*?newy ?newy))
(bind ?*minz* (min ?*minz* ?newiz))-
(bind ?*maxz* (max ?*maxz* ?newz))

;update giobals and then line parameters
(calculate-line-fit-and-update-global-variables)

(bind ?correlation (-1 ?*rho*))

;update endpoint status slots for possible retraction of used data
(modlify'?end-point (status USED))
(modify ?new-point (status ENDPOINT))

(modify ?current-line (r ?*r*)
(orientation -(normalize (degrees

(atan2 (- ?newy ?starty) (- ?newx ?,startx)))))
(correlation ?correlation) ; value range (l-c3..l]
(end ?newtime))

(format ?*out* Added another point to the regression line.tn");

else
(modify ?current-line (status VALID)) ; test failed, save old line

;current point retains status NEW unless it is a dummy point at time zero
(if (- 0 ?newtime) then (retract ?new-point))

;initial node of new segment

(bind ?*delta* (4 ((cos ?*Phi*)(C- ?*meanx* ?startx))
((sin ?*phi*)(C- ?*meany* ?starty)))) ; residual

(bind ?*projection-x* I-- ?s-tartx (' *dalta* (cos ?*Phi*))))
(bind ?*projection-y* (4_ ?,tarty (*delta* (sin ?*phi*))))
(bind ?start-projection-x ?*projection-x*)
(bind ?start-projection-y ?*projection-y*)
(bind ?correlation (- 1 ?*rho*))
(assert (Node (time ?starttime) ; edge's virtual start node

(X ?*projection-x*)
(y ?*projection-y*)
(Z 7startz)
(accuracy ?*d-minor*) ; minor axis diameter
(confidence ?correlation))) ; using elliptical thinness

(format ?*out* 11 Valid node completed, data time %3.lftn" ?starttime)

(printout plotfile (+ ?*projection-x* ?*offsetx*) 11
(+ ?*projection-y* ?*offsety*) crlf)

(format ?*out* Projection endpoints (%5.1f, %5.1f)"
(4 ?*projection-x* ?*offsetx*)
(4 ?*projection-y* ?*offsety*))

final node of new segment

(bind ?*delta* (4 ((cos ?*phi*)(C- ?*meanxct ?endx))
((sin ?*Phi*) (- ?*meany* ?endy)))) : residual

(bind ?*projection-x* 1+ ?endx (4?*delta* (cos ?*phi*))))
(bind ?*projection-y* (4 ?endy ('?*delta* (sin ?*Phi*))))
(bind ?confidence (-1 ?*rho*))
(assert (Node (time ?endtime) ; edge's virtual end node

(x ?*projection-x*)
(y ?*projection-y*)
(z ?endz)
(accuracy ?*d-minor*) ; minor axis diameter
(confidence ?confidence))) ; using elliptical thinness

(format ?*out* (% 5.1f, %5.lf)%n11
(+ ?*projection-x* ?*offsetx*)
(4 ?*projection.y* ?*offsety*))

(format ?*out* 11 Raw data endpoints 0%5.1f, %5.1f) (%5.1f, %5.lf)%n"
(4 ?startx ?*offsetx*)
(4 ?starty ?*offsety*)
(4 ?endx ?*offsetx*)
(4 ?endy ?*offsety*))

(format ?*out* '1 Valid node completed, data time %3.lf %n" ?endtime)
(printout plotfile (4 ?*projection-x* ?*offsetx*) *I 11

(4 ?*projection-.y* ?*offsety*) crlf 11\1 \111 crlf)

(assert (Edge (start ?starttime)
(end ?endtime)

165

(averagez, -(avg ?*minz* ?*maxz*f)))
(format ?*oUt*' Valid edge'completed, data times (4%3.lf 3.1)"

?starttime' ?endtime)"
(format ?*out* "averagez - %3.1f, linerk i %3.lfi"

(avg ?*minz* ?*maxz*) ?*r*)

(format ?*out* "line orientation -%3.lf-degreeitn"
(normalize (degrees (atan2 (-?newy ?starty) C-?riwx ?startx)))))

(format auvfile
"%nPoint %5.lf %4.lf %3'.lf time %4.1f"

(+ ?start -projection-x ?*offsetx*)
(+ ?start-projection-y ?*offsety*)
(+ ?startz ?*offsetz*)
?starttime)
;depth range 0. .8 ft, time is optional

(format auvfile
"1%nPoint %5.lf %4.lf %3.lf time %4.1f"

(+ ?*projection-x* ?*offsetx*)
(+ ?*projection.y* ?*offsety*)
(+ ?endz ?*offsetz*),
?endtime)

(format auvfile
11%nSegment %.lf %4.lf %3.lf %.lf %4.lf %3.lf time %4.1f"

(+ ?start-projection-x ?*offsetx*)
(+ ?start-projection-y ?*offsety*)
(+ U1 (+ ?*minz* ?*maxz*) 2.0) ?*offsetz*)
(+ ?*projection-x* ?*offsetx*)
(+ ?*projection-y* ?*offsety*)
(+ U1 (+ ?*minz* ?*maxz*) 2.0) ?*offsetz*)
?endtime)

(assert (check-file-flag))
(assert (start-new-window-flag))
(format ?*out* 11Valid regression line actions completed, data time %3.lfll

?endtime)
(format ?*out* "Wn" m)

Rules for retraction of exces5 data facts (garbage collection)

(do frule retract-excess-Range data

(retract-excess-data TRUE)
?range-data <- (Range-data (processed TRUE))

(retract ?range-data)

(defrule retract-excess-Point

(retract-excess-data TRUE)
?point <- (Point (status INVALID I USED))

(retract ?point)

(defrule retract-excess-endpoint

(retract-excess-data TRUE)
')Point <- (Point (status ENDPOINT) (time ?point-time))
?node <- (Node (time ?node-time))
(test (- ?point-time ?node-time))

(retract ?point)

Gyro error rules

(defrule determine-initial-gyro-error

(declare (salience 300))
?Pool <- (location pool) ; this rule only works in the pool

166

?poly <- (Polyhedron '(classificationWALL) (start ?polystart) (end'.?polyend)
(stitus- COMPLETE))

(test '(- ?*niwgyroerror* 0.0)) ; first wall provides best est', don't repeat
?line <- (Reression line (start ?start) (end ?end) (orientation,?oientationi)

7(status USED I USEDFORAP.EA))
(test (- ?poiyenid- ?end))

?pointl <- (Point (time ?timel) (x ?xl) (y ?yl) (z ?il))
(test (- ?tirnel ?start),)
?point2 <- (Point (time ?time2), (x ?x2) (y ?y2) '(z ?z2))
(test (=?time2 ?end))
(test (-(distance ?xl ?yl ?zl ?x2 ?y2 ?z2) 2.0)) ; skip short segments

(bind ideltai (norrnalize2 (- ?orientation 0.0)))
(bind ?delta2 (normalize2 (7 ?orientation 90.0)-))
(bind ?delta3 (normalize2 C-?orientation 180.0)))
(bind ?delta4. (normalize2 (-?orientation 270.0)))

(if (< (abs ?deltal) (min (abs ?delta2) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyroerror* ?deltal))

(if (< (abs ?delta2) (min (abs ?deltal) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyroerror* ?delta2))

(if (< (abs ?delta3) (min (abs ?delta2) (abs ?deltal) (abs ?delta4))) then
(bind ?*newgyroerror* ?delta3))

(if (< (abs ?delta4) (min (abs ?delta2) (abs ?delta3) (abs ?deltal))) then
(bind ?*newgyroerror* ?delta4))

(bind ?*gyroerrortime* (avg ?start ?end)) ; average time of wall segment
(format t 1"%nUser-provided gyro error - %4.lf degrees" 7*gyroerror*)
(format t "1%nWall orientation - %4.lf degrees" ?orientation)
(format t "for time %3.1f (%3.lf .. %31)

(avg ?start ?end) ?start ?end)
(format t "1%nExpert system gyro error - %k4.lf degrees" ?*newgyroerror*)

(defrule dotermine-rcyro-dri±t-rate

(declare (salience 300))
?pool <- (location pool) ; this rule only works in the pool
?poly <- (Polyhedron (classification WALL) (start ?polystart) (end ?polyend)

(status COMPLETE))
(test (<> ?*newgyroerror* 0.0)) ; perform only if new gyro error calculated
?line <- (Regression line (start ?start) (end ?end) (orientation ?orientation)

(tes (-?poyen ?ed))(status USED I USEDFORAREA))

(testnd ?olyel ndraie ?oieendn))ecjrero .

(bind ?deltal (normalize2 (-?orientation ?*newgyroerror* 90.0)))
(bind ?delta3 (normalize2 (-?orientation ?*newgyroerror* 980.0)))
(bind ?delta3 (normalize2 (-?orientation ?*newgyroerror* 180.0)))

(if (< (abs ?deltal) (min (abs ?delta2) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyrodriftrate* ?deltal))

(if (< (abs ?delta2) (min (abs ?deltal) (abs ?delta3) (abs ?delta4))) then
(bind ?*newgyrodriftrate* ?delta2))

(if (< (abs ?delta3) (min (abs ?delta2) (abs ?deltal) (abs ?delta4))) then
(bind ?*newgyrodriftrate* ?delta3))

(if (< (abs ?delta4) (min (abs ?delta2) (abs ?delta3) (abs ?deltal))) then
(bind ?*newgyrodriftrate* ?delta4))

(format t "1%nWall orientation -%4.lf degrees" ?orientation)
(format t 11for time %3.lf (%3.lf .. %31)

(avg ?start ?end) ?start ?end)
(format t 11%nCurrent gyro error - %4.lf degrees%n"

(+ ?%tnewgyrodriftrate* ?*newgyroerror*))
(bind ?*newgyrodriftrate* (* 3600.0 (/ ?*newgyrodriftrate*

(- (avg ?start ?end) ?*gyroerrortime*))))

(if (<= (abs ?*newgyrodriftrate*) 200.0) then
(format t 1124pert system gyro drift rate -%4.lf degrees/hour %n"

?*newgyrodriftrate*))

;Completion!

(defrule plot-pool-graph-file-when-done ; this rule is the last to be fired

167

(declare (salience 0)) ;all other rules take precedence
?range-file'-losed <- (range;file-cl6sedflag) k r

(format t
"%n%nElapsed time to perform sonar classification: %3.if sec6nds.%n%n"
(- (time) ?*time*))

all file outputs'complete
(close plotfile)
(close auvfile)

(printout t crlf crlf-"Sending pool.auv to iris graphics subdirectory."
crlf)

first save old copy of file to pool.bak
(printout t crlf "rcp gemini:-brutzman/clips/pool,auv.bak"

" irisl:-brutzman/graphics/pool.auv.bak", crlf)
(system "rcp gemini:-brutzman/clips/poo.auv.bak"

" irisl:-brutzman/graphics/pool.auv.bak")

(printout t crlf "rcp gemini:-brutzman/clips/pooi.auv"
" irisl:-brutzman/graphics/pool.auv" crlf)

(system "rcp gemini:-brutzman/clips/pool.auv"
" irisl:-brutzman/graphics/pooloauv")

(printout t crlf "rcp gemini:-brutzman/clips/pool.auv"
" irisl:-brutzman/preview/pool.auv" crlf)

(system "rcp gemini:-brutzman/clips/pool.auv"
irisl:-brutzman/preview/pool.auv")

You must be running under sunview on a workstation for sunplot to work.
(printout t crlf crlf "The generated pool.graph sunplot follows:" crlf crlf)

(printout t "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System "

"\" -x 145 -15 -y -50 110 < pool.graph I sunplot -c 650"
crlf crlf)

(system "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System "
"\" -x 145 -15 -y -50 110 < pool.graph I sunplot -c 650")

(system "rm core") ; remove core dump file which resulted
if not running under sunview

(if (yes-or-no "Do you want to print the screen log file")
then (dribble-off)

(system "enscript -G -r auvsonar.log"))

(if (yes-or-no "Do you want a hard copy of the sonar plot")
then
(open "pool. auv" auvfile "a")
(open "pool.graph" plocfile "a")
(printout t crlf)
(if (yes-or-no "Do you want to add a comment line tc the plot")
then (printout t crlf crlf "Enter comment: ")

(bind ?comments (readline))
(printout auvfile cilf "Comment: " ?comments crlf)
(printout plotfile " 115 80 " crlf "\"" ?comments " \" " crlf))

(printout t crlf crlf "The generated pool.graph is being plotted:"
crlf crlf)

(printout t "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System
"\" -x 145 -15 -y -50 110 < pool.graph I lpr -g -h -Pap2"
crlf crlf)

(system "graph -b -g 1 -1 \"NPS AUV Sonar Classification Expert System
"\" -x 145 -15 -y -50 110 < pool.graph I lpr -g -h -Pap2")

all file outputs complete
(close plotfile)
(close auvfile)

(printout t crlf "The generated pool.auv file follows:" crlf crif)
(system "more pool.auv")
(printout t crlf crlf crlf)

Polyhedron output function and rules

(deffunction output_polyhedron (?starttime ?endtime
?startx ?starty ?startz
?endx ?endy ?endz
?classification ?comment)

168

(format t"nz~epolyhedron ,At times (%3.lf .. %3.lf)
? starttime ?endtime)

(prinitout t "has cl'assificati6n " ?classification n."n crlf crlf)

(format auvfile
"%n%s %5.1f %4.1f %3.1f %5.1f %4.lf %3.lf time %4.lf %s"

?classi fication
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*,)
(+ ?startz ?*offsetz*)
(+I ?endx ?*offsetx*)

(+?endy ?*offsety,*)
(t- ?endz ?*offsetz*)
?endtime
?comment)

(format auvfile "%n")

(format ?*out* "%n%n")
(format ?*out*

'!%nts t5.lf %k4.lf %3.lf %5.lf %4.1f 03.1f time t4.lf %s"
?classification
(+ ?startx ?*offsetx*)
(+ ?starty ?*offsety*)
(+ ?startz ?*offsetz*)
(+ ?endx ?*offsetx*)
(+ ?endy ?*offsety*)
(+ ?endz ?*offsetz*)
?endtime
?comment)

(format ?*out* '196%l1)

(defrule change-colors-for-inferred-edges-when-done

(declare (salience 40)) ;pre-completion rules take precedence
?range-file-closed 4- (range-file-closed-flag)

(printout auvfile crlf crlf ?*color2* " Color scheme for inferred edges 1
crlf) ; secondary default color scheme

(defrule output-polyhedrons-with-inferred-edges-when-done

(declare (salience 30)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)
?poly <- (Polyhedron (status COMPLETE I USED FORAREA)

(start ?startpolytimel'
(end ?endpolytime)
(startx ?startx) (starty ?starty) (startz ?startz)
(trait INFERRED EDGE)
(classification WALL))

node matches end of polyhedron
?node <- (Node (time ?nodetime) (x ?nodex) (y ?nodey) (z ?nodez))
(test (- ?endpolytime ?nodetime))

(output polyhedron ?startpolytime ?endpolytime
?startx ?starty 0.0
?nodex ?nodey 8.0
"WALL"1
"(inferred edge) ")

(defrule change-colors-for-hidden-edges-when-done

(declare (salience 20)) ; pre-completion rules take precedence
?range-file-closed <- (range-file-closed-flag)

(printout auvfile crlf crlf ?*color3* " Color scheme for hidden edges 1
crlf) ; tertiary default color scheme

169

(defrule output-object-polyhedrons-with-hidden-edges-when-done

(declare (salience 10)) ; pre-completi6n rules take precedence
?range- file-closed <- (range-file-closed-flag)
?poly <: (Polyhedron (status-COMPLETE I USED FOR_AREA)

(start ?startpolytimeT
(end ?endpolytime)
(startx ?startx) (starty ?starty) (startz ?startz)
(trait HIDDENEDGE)
(classification-WALL))

node matches endoof polyhedron
?node <- (Node (time ?nodetime) (x ?nodex) (y ?nodey) (z ?nodez))-
(test (= ?endpolytime ?nodetime))

(output-polyhedron ?startpolytime ?endpolytime
?startx ?starty 0.0
?nodex ?nodey 8.0
"WALL"
"(hidden edge)")

Polyhedron building rules

(defrule polyhedron-building-start

(declare (salience 430)) ; lower salience value than polyhedron-building
?line <- (Regressionline (status VALID)

(start ?starttime) (end ?endtime))

?start-node <- (Node (time ?nodetime)
(accuracy ?accuracyl)
(x ?startx) (y ?starty) (z ?startz))

(test (= ?starttime ?nodetime))

?end-node <- (Node (time ?endnodetime)
(accuracy ?accuracy2)
(x ?endx) (y ?endy) (z ?endz))

(test (- ?endtime ?endnodetime))

(assert (Polyhedron (status ACTIVE)
(start ?starttime) (end ?endtime)
(startx ?startx) (starty ?starty) (startz ?startz)
(centroidx -(+ ?startx. ?endx))
(centroidy -(+ ?starty ?endy))
(centroidz -(+ ?startz ?endz))
(sidecount 1)
(accuracy w(max ?accuracyl ?accuracy2))
(trait OBJECT BUILDINGBASED)
(classification WALL)))

(modify ?line (status USED))

(bind ?length (distance ?startx ?starty ?startz ?endx ?endy ?endz))

(if (>- ?length ?*min wall length*)
then (output polyhedroi ?starttime ?endtime

?startx ?starty 0.0
?endx ?endy 8.0
WALL "(new polyhedron start)"))

(defrule polyhedron-building-continuation

This rule tests the newest edge in relation to the most recent previous edge
of the currently ACTIVE polyhedron.

If the edges are too far apart, the previous polyhedron is COMPLETE and the
new edge is ignored in order for it to begin a new polyhedron.

If the edges are colinear, the new edge is included as part of the
currently ACTIVE polyhedron.

If the edges are concae, the previous polyhedron is COMPLETE and the new
edge is ignored in order to let it begin a new polyhedron.

170

;If the edges are c6onvex, the new edge is included as part of the'
;currently ACTIVE polyhedron, and the polyhedron is reclassified
;from WALL to OBJECT.

;Specific~polyhedron OBJECT reclassifications will be made by-higher level rules.

(declare (salience 440)) ;. higher salience value than polyhedron start
?poly <- (Polyhedron (status ACTIVE)

(start ?startpolytime),
(end ?endpolytime)
(accuracy ?polyaccuricy)
(stirtx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz),
(sidecotint. ?sidecount)
(area ?area)
(classification ?classification))

;lifiel is most recent valid regression line included in the polyhedron
?linel <- (Regression-line (status USED)

(start ?startlineltine)
(end ?endlineltime)
(orientation ?orientationl))

(test (= ?endpolytime ?endlineltime))'

;line2 is newest valid regression line to be evaluated
?line2 <- (Regression line (status VALID)

(start'?startline2tine)
(end ?endline2tine)
(orientation ?orientation2))

nodel matches end of linel (Most recent valid regression line)
?nodel <- (Node-(time ?nodeltime)

(accuracy ?accuracy2)
(x ?nodelx) (y ?nodely) (z ?nodelz))

(test (= ?endlineltime ?nodeltime))

node2 matches start of line2
?node2 <- (Node (time ?node2time)

(accuracy ?accuracyl)
(x ?node2x) (y ?node2y) (z ?node2z))

(test (- ?startline2time ?node2time))

node3 matches end of line2
?node3 <- (Node (time ?node3time)

(accuracy ?accuracy3)
(x ?node3x) (y ?node3y) (z ?node3z))

(test (- ?endline2time ?node3time))

(bind ?distance (distance ?nodelx ?nodely ?nodelz ?node2x ?node2y ?node2z))

if distance is too great, don't continue building polyhedron with new edge
(if (> ?distance ?*max edge distance*)
then (modify ?poly (status COMPLETE)

(area -(abs ?area))
(centroidx (/?centroidx ?sidecount 2)) ; 2 points/side
(centroidy -I?centroidy ?sidecount 2))
(centroidz s./?centroidz ?sidecount 2))
(sidecounterl ?sidecount)
(sidecounter2 ?sidecount))

if polyhedron was not a WALL, assert a HIDDENEDGE wall for it
(if (not (eq ?classification WALL))
then (format t 11%nPolyhedron OBJECT (%3.lf .. %3.1f) 1

?startpolytime ?endpolytime)
(format t "has area %3.lf%n" (abs ?area))
(format auvfile "(prior object area was %3.1f)' (abs ?area))
(assert (Polyhedron (status COMPLETE)

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx -(avg ?startx ?node3x))
(centroidy =(avg ?starty ?node3y))
(centroidz -(avg ?startz ?node3z))
(sidecount 1)
(accuracy ?polyaccuracy)

171

(trait HIDDENEDGE)
(claisificAtion WALL)))

(bind ?length. (distance '?node2x ?node2y ?nod e2z ?node3x ?node3y ?node3z))

;if dis-tance -is ,close. eno-ugh, then, test- colinear/convex/corfcave
lif (=?distance6 ?*max edge distance*)
then (if (=(abs (iormaliz~e2 (C- ?orientationl ?orientation2)))

?*max edgeangle*)
then ; colinearedgefound and added to polyhedron

; also add '5' Area between start point and new segments
(bind ?trianigleareal (S ?startx ?staity -

?nodelx ?nodely ?node2x ?node y))
(bind ?trianglearia2 (S ?startx ?starty- .

-?node2x ?node2y ?node3x ?node3y))
(modify ?poly (end ?en 'dline2time)

(area =(+ ?area ?triangleareal ?triangiearea2)
(ceritroidx =+?centroidx ?node2x ?n'ode3x))
(centroidy (+?centroidy -?node2y ?node3y))
(centroidz (+?centroidz,2node2z ?node3z))

-(sidecount --(+ isiddcount 1)))
(modify ?line2 (status USED))

(assert (Polyhedron (status COMPLETE)
(start ?endlineltime)
(end ?startline2time)
(startx ?nodelx)
(starty ?nodely)
(startz ?nodelz).
'(centroidx -(aVg ?nodelx ?node2x))
(centroidy -(avg ?nodely ?node2y))
(centroidz -(avg ?nodelz ?node2z))
(sidecount 1)-
(accuracy -(max ?accuracyl ?accuracy2))
(trait INFERRED EDGE)
(classification WALL))T

(if (-?length ?*min wall length*)
then (outputjnolyhedronE ?startline2time ?endline2time

?node2x ?node2y 0.0
?node3x ?node3y 8.0
"WALL"
"(added colinear edge)"))

else ; test for convex edge to continue building,
;otherwise edge is concave and-polyhedron is com~plete.
;note this rule currently coded to work only for left transducer

(if (< (normalize2 (- ?orientation2 ?orientationl)) 0.0)

then ;.convex edge found, and joined to polyhedron
also add '5' area between start point and new segments

(bind ?triangleareal (S.?startx ?starty
I?nodelx ?nodely ?node2x ?node2y))

(bind ?trianglearea2 S ?startx ?starty
?node2x ?node2y ?node3x ?node3y))

(modify ?poly (end ?endline2time)
(classification OBJECT)
(area - +?area ?triangleareal

?trianglearea2))
(accuiacy -(max ?accuracy2

?accuracy3 ?polyaocuracy))
(centroidx -+?centroidx ?node2x ?node3x))
(centroidy (+?centroidy ?ndde2y ?node3y))
(centroidz -+?centroidz ?node2z ?node3z))
(sidecount (+?sidecount 1)))

(modify ?line2 (status USED))

(assert (Polyhedron (status COMPLETE)
(start ?endlineltime)
(end ?startline2time)
(startx ?nodelx)
(starty ?nodely)
(startz ?nodelz)
(centroidx -(avg ?nodelx ?node2x))
(centroidy -(avg ?nodely ?node2y))
(centroidz -(avg ?nodelz ?node2z))
(sidecount 1)
(accuracy =(max ?accuracyl ?accuracy2))
(trait INFERRED-EDGE)
(classification WALL)))

172

(ift> ?length ?*min wall leicgth*)
then (outpuitpoy ndo ?startline2time.' ?ndlinie2time

_poyheroF'.node2x ?-node2y 0;.O
?node3x ?node3y 8.0
"WALL-
"(added-convex-edge) ')

else ; concave edge found so don't continue building polyhedron
(modify ?poly (status COMPLETE)

(area = (abs. ?area)),~
(centroidx =UI ?centroidi~ ?side count 2))
(centroidy =U ?centroidy ?sidecount 2))
(centroidz =UI ?centroidz ?sidecount 2))
(sidecounteri ?sidecount)
(sidecounter2 ?sicdecount))

;if polyhedron was not a WALL, assert _- HIDDEN-EDGE wall
(if -(not (eq ?classification WALL))
then (format t "SnPolyhedrom OBJECT (%3.lf .. %&3.lf)

?startpolytime ?endpolytime)
(format t "has area %3;.lftn" (abs ?area))
(format auvfile- (prior object-area was %3.1 f)" (abs

?area)!~
(assert (Polyhedron -(status COMPLETE)-

(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx =(avg ?startx ?node3x))
(centroidy =(avg ?starty ?node3y))
(centroidz =(avg ?startz ?node3z))
(sidecount 1)
(accuracy -?polyaccuracy)
(trait HIDDEN EDGE)
(classification WALL)Th)

(defrule complete-active-polyhedron-after-file-reading-finished

(declare (salience 420)) ; polyhedron determination rules take precedence
?range-file-closed <- (range-file-closed-flag)

?poly <- (Polyhedron (status ACTIVE)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(accuracy ?polyaccuracy)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area)
(classification ?classification))

node matches end of polyhedron
?node <- (Node (time ?nodetime)

(accuracy ?accuracy)
(x ?nodex) (y ?nodey) (z ?nodez))

,tort %- -cndpolycime ?nodetime))

(modify ?poly (status COMPLETE)
(area =(abs ?area))
(centroidx -UI ?centroidx ?sidecount 2)) ;2 points/side
(centroidy (I?centroidy ?sidecount 2))
(centroidz (I?centroidz ?sidecount 2))
(sidecounterl ?sidecount)
(sidecounter2 ?sidecount))

if polyhedron was not a WALL, assert a HIDDEN-EDGE wall for it
(if (not (eq ?classification WALL))
then (format t "%nPolyhedron OBJECT (%3.lf .. %3.1f) has area %3.lf%n'

?startpolytime ?endpolytime (abs ?area))
(format auvfile 11 (prior object area was %3.1f)" (abs ?area))
(assert (Polyhedron (status COMPLETE)

(start ?startpolytime)

173

(end lendpolytime)
(startic .?startx)
(starty ?starty)-
(startz ?startz)
(cefitroidi -(avg ?startx ?nodex))
(centroidy -(avg ?starty ?nodey))
(centroidz =(avg ?startz ?nodez))
(sidecount 1)
(accuracy ?polyaccuracy)
(trait HIDDEN -EDGE)
(classification WIALL)

Completed polyhedron area calculation rules

(defrule oldareal

; compute-polyhedron-area-contribution-frorn-regression-edges

(declare (salience 415)) ; polyhedron determination rules take precedence
?poly <- I.Polyhedroft (status COMPLETE)

(trait OBJECT BUILDING 'BASED)
(classification OBJECTYT
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)-
(starty ?starty)
(startz ?startz)
(centroidx ?node3x)
(dentroidy ?node3y)
(centroidz ?node3z)
(sidecount ?sidecounit)-
(sidecounterl ?sidecounterl)
(area ?area))

(test (> ?sidecounterl 0)) ; prevent infinite recursion

;get the next line contributing to polyhedron area
?edge <- (Edge (start ?startedgetime)

(end ?endedgetime)
(status USED))

(test (and (=?startedgetime ?startpolytime)
(=?endedgetirne ?endpolytime)))

nodel matches start of edge
?nodel <- (Node (time ?nodeltime)

(x ?nodelx) (y ?nodely) (z ?nodelz))
(test (- ?startedgetime ?nodeltime))

node2 matches end of edge
?node2 <- (Node (time ?node2time)

Nx ?node2x) (y ?node2y) (z ?node2z))
(test (= ?endedgetimo ?node2time))

(bind ?trianglearea (S ?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y))

(modify ?poly (sidecounterl i-?sidecounterl 1))
(area (+?area (abs ?trianglearea))))

(modify ?edge (status USED-FOR-AREA))

(defrule oldarea2

compute-polyhedron-area-contribution-from-inferred-walls

(declare (salience 410)) ; polyhedron determination rules take precedence
?poly <- (Polyhedron (status COMPLETE)

(trait OBJECT BUILDINGBASED)
(classification OBJECTT
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)

174

(startz ?startz)
(centroidx ?node3x)
-(centroidy ?node3y)
(ceritroidz ?node3z)
(sidecount ?sidecount)
(sidecounter2 ?iLdecounter2)
(area ?area;;

-(test (> ?sidecounter2 0))- ; prevent infinite recursion

;get a matching inferred wall, or hidden- edge polyhedron~
?poly2 <m' (Polyhedron (status COTLETE)

- (trait INFERRED EDGE I- HIDDEN EDGE)
(classification, WALL) -

(start ?startpoly2tim)
(end ?eniipoly,2time)
(startx ?nodelx)
(starty ?nodely)
(startz ?nodelz))

(test (and (=-?startpoly2time ?startpolytime)
(=?endpoly~time ?endpolytirne)))

; node2 matches the end of this inferred/hidden wall
?node2 -<- (Node (time ?node2time)-

Nx ?node2x) (y ?node2y) (z -?node2z))
(test -(= ?endpoly2time ?node2time))

(bind ?trianglearea (S ?nodelx ?nodely ?node2x ?node2y ?node3x ?node3y))

(modify ?poly (sidecounter2 = -?sidecounter2 1))
(area (+?area (abs ?trianglearea))))

(modify ?poly2 (status USED FOR AEA))

(if (eq ?sidecounter2 1) ; last edge triangle has been added
then (format t "%nPolyhedron OBJECT (%3.lf .. %3.1f) has area %3.lftn"

?startpolytime ?endpolytime (+ ?area (abs ?trianglearea))))

;object classification rules: the top level at last!

(defrule classify-pool-objects

(declare (salience 400)) ;polyhedron determination rules take precedence

?poly <- (Polyhedron (status COMPLETE)
(trait OBJECT BUILDINGBASED)
(classification OBJECT)
(start ?startpolytime)
(end ?endpolytime)
(startx ?startx)
(starty ?starty)
(startz ?startz)
(centroidx ?centroidx)
(centroidy ?centroidy)
(centroidz ?centroidz)
(sidecount ?sidecount)
(area ?area))

node matches end of polyhedron
?node <- (Node (time ?nodetime)

(accuracy ?accuracy)
(x ?endx) (y ?endy) (z ?endz))

(test (- ?endpolytime ?nodetime))

----------------------------- - - ----- - - -- - -- -- -- -- -

;Reclassify long skinny objects as walls

(bind ?length (distance ?startx ?starty ?startz ?endx ?endy ?endz))
(if (<- UI ?area ?length ?length) ?*wall-thinness-ratio*)
then (bind ?area 0.0)

(modify ?poly (classification WALL) (area 0.0))
(format t '"%n*** OBJECT at (%3.lf .. t3.1f) reclassified as a WALL.%n"

?startpolytime ?endpolytime)

175

Mine classification

-(if (and (>= ?area 10.0) (-<= ?area 100.0)) ; area criteria-test
then (modify ?poly. (classification MINE))

(format t "lln~nThe polyhedron, at-times (%3.lf .. %3.1f) J,
?3t'artpolytime ?endpolytime)

(printout t "ihas-classification MINE." crlf crlf)
'(format'auvfile

"1%n%s, %5.lf %4.lf'%3.-f %5.1-f time %4.1f"
MINE
(+ ?centroidk ?*offsetx)
(+ ?centroidy ?*offsety*)
(+ ?centroidz ?*offsetz*)

.I ?area (pi) 2 6) '1 -radius
?endpolytime)

(format auvfile "%n"!)-

(format ?*out*
"%tn%s %5.lf %4.lf %3.lf %S.lf time %4.1f"

Mine
(+ ?centroidx ?*offsetx*)
(+ ?centroidy ?*offsety*)
(+ ?centroidz,?*offsetz*)
(/ ?area (pi) 2 ,6) ;-radius &sonar beamwidth fudge factor
?endpolytime)

(format ?*out* "%n"))

176

APPENDIX D

Shortest Path Planning.

in A Circle World

Yutaka Kanayama
Donald P. Brutzman

Departmeit of Computer Science
Naval Postgraduate School

Monterey CA 93943
U.S.A.

September 21, 1991

Abstract

This paper discussed the shortest path planning problem in a world- with n circular obsta-
cles. This problem can be considered a simplified mathematical model of the shortest path
planning problem for a polygonal world' As we established a method to treat circles in a man-
ner similar to nodes in a search graph, the Dijkstra's algorithm can be applied and the problem
is solved in time 0(n2 log n). The A* algorithm dramatically improves searching efficiency in
this problem. These results are given with numerous example figures. However, considering
the 0(n2) time result on the n line segment visibility problem, there is a strong possibility of
being able to solve this circle world problem in O(n2) .time also.

1 Introduction

The shortest path problem in a polygonal world has been extensively discussed in numerous articles.
Let n be the number of segments in a polygonal environment. Sharir and Shorr first showed that it
is solved in time O(n 2 logn) [16] and this was improved by Welzl [17] and Asano et.al. [2]to O(n 2).
The use of Dijkstra's algorithm to spatial planning problems was first proposed by Lozzano-Perez
and Wesley (10].

This paper discusses the shortest path planning probiem in a world with n circular obstacles,
which first appeared in [12J. This problem can be considered a simplified mathematical model of the

177

shortest path-planning problem-fora,polygonalwoild. As is well,kiown, the fuidarnentaiapproach
to §olve the shortest path proble istouseisibletangentso bst s6, 3,16,15, 17, 29,7.
This paper also uses, that approach. 'One6f-.the significant results of thi spaper is that weare alle
to treat a-circle in this Wold likea node ih a, search graphj an ,thus, are abie to empIly,,DijkstrA's
ajgrithm.

At, least one previous application, the Stanford cart mobile r6bot, used a.:similak circle world
model for obstacle representation and avoidance. The combination. of vision processing and path
planning aboard that small robot prbvedprohibitive for real-time use due to :hardware limitations
and algorithmic complexity [12]. ,It is hoped that theoptimal-algorithm:provided in this paper will,
support real-time path planning by autonomous vehicles. The circle world search mode! is directly
extendible to the general: case, of three-dimeisional'path :planning and; is particularly suitable for
underwater vehicle path planning [5].

2 Problem Statements

The environment for this, path ,planningprpblem _is a, plane on whi'ch a.global, Cartesian -co~dinate
system is defined. A circle C is a triple of XY coordinates and a radius (> 0),

C = y,,) (1)

A world W is a set of circles,
W ={1 .C , 0(2)

where no pair of circles .are intersecting or touching. A free space is a. complement of the union, of

all the circles (the free space includes the circular boundaries). Let a start point S and a goal point
G be points in the free space. Any path joining S and G must stay in the free space. The problem
is to find a shortest path joining S and G in this world W (Fig. 1).

3 Fundamentals

3.1 Tangents and Common Tangents

Let C = (x, y, r) be a circle, If. the intersection of a directed line (or a ray) and the circle C is
only a point, the line is said to be a tangent to C. If the circle C is on the left of a, tangent to C,
the tangent is called a plus or counterclockwise tangent. If C is on the right of a tangent to C, the
tangent is called a minus or clockwise tangent (Fig. 2). The "plus" or "minus" characteristic of a
tangent is called the mode.

178

Let',po (,-yo) be a point out-ide hecircle C. The two tangents from po toC-are Uniquely
determined(Fig 2). The 6riktation O+ 0f theplus tangent .froPo to-the cir-e Cis

+ = t(po, (X;y))- sinC (.).y), _ist(po, (x, V))

-where 4I(p,,q). stands for the- orientatn, from a point p to point q, in- fur.- quadrants (T''(p,q) E
[-77r, r])i On the other hand, the orientatidn9O: of the minus tangent from p0 to the circle C is

- T (P6,,(x, y)) + sin(dtp- (;)) ()

Therefore,, if a tangent of mode m from a point to -a- circle, C, assuming that -its value is +1 ifthi
-mode is plus and -i if-it is -minus, the previous two equations are expressed by

Smr(5
0= TI(po,(v, y)) -dn is t F(po,,(x, y)) = sin-',(y)

The, intersection of a tangent and a circle is called. an bsculating. point. In this case in Fig 2, ,the
osculating points are also called landing poinits.

Likewise, a, tangent of, mode m from a cirle C to a point p0, (Fig 3) has an-orientation

=F((,x, y),po)+ sin-' mx (6)
,ds(po,-(x, 0')

In this case, the osculating points are called leaving points.

There are four common tangents from a. circle C = (x,yi,rv) to another C2 - (x2,Y i 2)

(Fig. 4).

Each of the four tangents are uniquely -named: ++ tangent, +- tangent, -+ tangent and --

tangent. The orientation Om' Im2 of these tangents is

0 = ((X ,y), (a', Y)) + sill1 dist(po, (x, (7)

Hereafter by "tangent" we mean a directed line segment between a point and osculating point,
or between- osculating points.

3.2 Visibility

The test for intersection of a (directed or undirected) line segment L with a circle C can be done in
a constant time as follows (Fig 6). First we find the region in Fig 6 that the center of C is located
in. After that we can compare the radius of C with d, where d is the distance between the center
of C and L, or the distance between the center and one of the endpoints of L (if L merely osculates

179

.the circle;-it is.not considered intefsecting). A line segment -L in :a world-W is visible in a ,world
W if L-does not cross4he circurnferente of any circle in W1'. Basically,.the Visibility.. test in W'for a
line segment needs 0(n) time. ,jIwever, jntegrating these tests simply for'ai the possible tangents

requires,0(4i)- time, since the number of all the tangents is O(n2). Thus, we will use some other
method as discussedlater.

3.3 Characterization of Shortest Path

A directed cirdle is a circle 'C with a mode or direction. A mode m is either counterclockwise (or
,plus) or clockwise (or :minus). A part of a-directed circle can be used asa component of a shortest
_path.

With a world of W, we define -the set M = M(W)'of (tangent) modes:

M(W) = {C+, C-.IC,,W} (8)

A mode sequence a over Al is a finite sequence of modes such that no subsequence, of C+C +,

C+'C-, C-C+ or - (wvith a single 1C E IV) is contained. Theempty mode sequence'is denoted
by c. The-set of all the mode sequencesis expressed as .,(W)* following the convention of language
and automata. theory. If, I'= {C, D}, examples of tangent sequences. ate:

C-, D+, R, C+D + , C+D- . DC+, .

A mode sequence a E Ai(1W)" with a start S and goal- G can be interpreted into a path
7r(a) by the following two rules. Furthermore, we assume the same tangent mode does not occur
consecutively in a. mode sequence a.

(I) If a = C,
7r(a) = -G if visible(S, G) (9)

where visible(S, G) means "S and G are visible in this world" foi directed line segment SG. If they
are not visible, the value r,(c) is undefined.

(II) If a = C"1. C!, where q >_ 1, Ca,...,Cq e W, and ml,...,mq E {+,-},

7r() -1 0" k 111k2 12 ... kqlq (10)

where

1. the right hand side of this equation is the concatenation of the 2q + 1 subpaths,

2. 1o is a ml tangent from 3 to circle Ci1 if the tangent is visible (in this world),

180

3.. fr each j- - 1), lIj is (mj-:m7(j +,I))- co1mo tangent from- cjfce Cj tocirleq 1 ,
if-thi4,tangeAt is -visible,

4~~~~~~ -qi qtnetf~ iceGqt fthis tangent is visible, and-

5. for each j*l < <<) k1 is the minimumi portioni-of the mhij)-,directed, circle -Cij between the
two osculating points. of the, previous and- next tangents ,(if both tangept;- aw-visible).

6. If any -of these subpaths d6,not, exist in, the world, the value 7r(o), is unfdefined',

A path r-is called canonical if -there ex:ists anmode-sequence o, such-That 7T = 2r(oj). 'The-following
-prop6sition' is essentiafl',n shortest path- planning, problem:

'Proposition 3.1 The shori est path for, a giveA world-and two endpoints-is car onical.

4 Dijkstra's Algorithm

-Having Proposition 31, there exists thie possibility -of applying Dijkstra's, algorithm to this path,
finding prIoblem. Dijkstra's algoifithnti is a standard approkh -to the-single-source shortest path
problem in a. -graph (1, 111. Although- the free space in a. circle world has, much, more freedom
than a. netwoi{- graph in p)ath planning, we can- tr~eat a-circle as-a. "generalized" search- node 'and'
tangents as arcs b)3 using minor search modificatiolts -and by taking advantage of -Proppsitiorn 3d.
This proposition, says that a-sh ortest p~ath, has,-a mode sequpence, - tnd lands on oneor more circles-
if S and G are not visible. Therefore, if~a circle-C"t is ifl d, thi-p .i'tial path- from -S to C-m is the
shortest,-one of all the possible paths from,$S to C-. The essence of this concept is the same as that
of Dijkstra's algorithmn. A relatively complicated cjue&sion is how two paths with distinct lan~ding,
pointson C should be comp~ared.

The following visibility preprocessing is required p~rior to emp~loying Dijjk.tra's algorithm;

1. visible tangents from S, to -all the circles in IY.

2. visible common tangeis between all the circles in W4.

3. visible tangents from all the-circles in 1IV to G.

4.1 Preprocessing for Visible Tangents to or from a Point

Let us consider the problem of finding all the visible tangents from S to all the circles in W. The
other problems of finding tangents between circles and tangents to G can be solved in a similar
manner.

Step 1. Compute, all the orientations. of tangents from S 'to all the, circles -in, both r_!-,odes..
Stp -.Sort these orientations -using. a heap.

Step 3. 'Sweep- all the tangent 'by their -orientations starting -with the orientation- of- the tangent'
with, the'sh6test -length. In this, sweep -process, visibility-is tested-,utsing a- heap built; accofrdling to
tangenit lengths. (For sweep technique, see 1141.)

The computationa.1 time -is 0(n),for Step 1, 0(n-log:7i)' -orStep 2, and..0(n log n) for Step 3 -(n
is the numnber-of circles). Thus, the overall computatLional comhplexity is -0 (n logni). The;r~siilt of
applying, this algorith m'to the- world given in.Figure, 1 is -shown, ii Figure 7.- All, vsbetagents-
'from all circles to G are sh6wn -in- Figure 8.

4.2 Preprocessing for Visible Common Tangents

There are tWo obvious ways to do thiis in 0(n 2 log n)' time. 'One'is to compute. all the. common
I tangents from a circle in Q(n log ?) time, (Fig, 9) and repeat this- for All-ncircles. Another method
is to list orientations of all the common, tangents amrong circles. T his task also needs 60(4 2 log n)-
time,, 'Next We sw(eep these tangents by orientation to update, the visibility rel'ation [14, 17]., This
part again,-takes,:O'(ni2-log ml'. time.

HoweVer, there is a 'strong-Ipos'ibilityof-',ccomplishing theentireprocess in.0(n?)I time using the
similar methods deyehbpeclfor fincling,a visibilitygraphof n line segments in that-time complexity
[17, 2]. This is an. opeii pr:blemn. All common talngents 'jn the examp~le circle world are shown in
Figure 10.

4.3 Compar-ison between Two Landin'g Paths

Figuie 11 shows-an example in'AN 1ich two pathis 7r, and,,r 2;lancj oi a directed- circle. In addition let
A12 be a portion of tb& directed' circle from the landing point of 7i to that of 7r2 , A21 is definied in
an analogous manner. The union of, both, portions m'ake a. complete directed circle.

Proposition 4.1 Asstme 7r, mid'ir2 land ont a rn-directed circle (7n 'E {+. -}). Either of the
folowing cases hl

(Case I) A closed path (7r1, A12, 72) does- not -contain the circle.

(Gase HI) A closed path (7r2,A 21, irl) does not containz the circle.

Let lg(7r) denote-the length of a, path 7r.

Proposition -4.2 I, thec situation described in Proposition 4. 1, in Case I, compare

1g(71i) + l9(A12) and 19(7r2) (1

182

On4he other hand,, in Case .I, .co,,pare

lg(jr2) + lg(A and lg(kr) (12);

In each case the longeri overall path should-be. discarded.

Proof. Let us examine the situation- in Figure 11 which falls under Case I In this ,case, -we
assume the goal. G or next'landing point is in region L, ,but not in region Rin the figure. Ifthe goal
or next landing point is in region R,,there exists a'better path than ir2 and its use is meaningless.
Therefore, th shorter of the two paths in Equation 11 is better for further extension. 0

in order to find wiidi of Case I or II' in Proposition 4.1 holds, we keepa record of "areas" -of
paths. Let 7t be any directed path from a: point P to Q. Let:us considera cycle consisting of three
paths, the directed line segment _- (S is the start of this path planning problem), 7r itself, and
anbtherdirected line"'segment QS. An area A(7) of,.r is an area composed by this, cycle. A(7r) is
'positive if the,:cycle is counterclockwise and negative otherwise. Since the algorithm for. evaluating
A(7r) is relatively simple, we wfili not giVe the'detailshere. Using this area,

Proposition 4. -n the situatioir described in Proposition 4.1,

* AsSume the mode is.+. If
- A(ir,) A(A 12) + A(,r2)'> 0. (13)

the closed path falls in Case I. otherwise Case HI.

* Assume the mode is -. If
A(7r,) + A(A2) - A(7t 2) > 0 (14)

the closed path falls in Case I, otherwise Case H.

4.4 Dijkstra's Algorithm

Using the preparation so far, applying Dijkstra's algorithm to the shortest path planning problem
in a circle world is possible. One of the significant changes from ordinary Dijkstra's algorithm is
that the distance from. S at a directed circle is related to the landing point to it.

Step 1. Unmark all' the directed (means "with mode") circles and let their distance = oo. Let
dtota I be 00.
Step 2. Assign the distance of all visible directed circles from S by their distances from S.
Step 3. Select an unmarked- directed circle Cm which contains the smallest distance. Mark it.
Step 4. Update the distance to directed circles which are visible from C'. If a circle already
contains a finite distance value, use the comparison algorithm described in Section 4.3.
Step 5. If there is a marked directed circle which is visible to G, update dtotat.

183

S tep 6. 1f dtotai. is leiss ,than- or equal to, the distances of all the uinmark d'dfected'. ciicles, stop.
-Otherwise go to -Step 3.

The result-of -applying Dijkstri's-algorithmn to the sainple world-is shoWn int Figurei12.

5 A loih

-In thi§-piobleifi, the use of the A*- agorithis -natura~l-l ad effective [131. Consider a-partial path
ir whose last landing point is P -on a, directed circle- C '. A lower; estini~ate of tihe lenhgth4&for the rest
zof the path -,r (or a'heuristicj&f!r ir)s "the dir ct.- distance -between 'P and the goal G. :However, there
is A, better hieuristic function.

First, take a tangentftpm Cm to G. Let -Q be. the leaving pqint-on -C-_ The heuristic function
i's the sum of a partial:directed'_circle PQO and .hc;uclidean #distanice Q (Fig. 13).. In ~inding the
tangent. from C"to o-G, -their is no need to calculate -visibility. EVen ifthe tangent from:-C to G
is, not -visible, this- isz lower" estimrate and -valid hleuristic. The result of applying, this heiiristic
functioni, depicted -iii Figure.14.

References

[1] Aho, A.V., Hopcroft, _JLE. ndUllman, J.D.,, Data Structures -anid AlgOithms,, Reading, Mas-
sachusetts, -Addi son-IWsley, 1985.

[2] Asano, T., Asano T., Gu.ibas, L., Hershberger,,J. and imai, H., -"Visibility- Polygon Search and
Euclidean Shortest Paths," Proceedings 26th Syrnposiuin on Fbuildations of- Computer Science
pp. 156-164, 1985.

[3]"Chazelle, B; and] Guibas, L.J., "Visibility and Intersection Problems in Plane Geometry,"
Proceedings of the A CA' Syinposiurfr onl- Cowputdiinal- Geometry, 1985.

[4] -Chew, L.P., "Planning the Shortest Path for a Disc in 0(71'logn) Time," Proceedings of the
AGM Symposium onl Comnputational Geometry, pp. 214-220, 1985.

[5) H-ealey, A.J., McGhee, R.B., Christi, R., Papoulias, F.A., Kwak, S.H., Kanayama and Y.,
Lee, Y., "Mission Planning, Execution, and Data Analysis for the NPS AUV II -Autonomous
Underwater, Vehicle,"1 Proc. ll"orkshop onl Mobile Robots for Subsea Environments, IARP, in
Monterey, California, pp. 177-186, October 23-26, 1990

[6] Hershberger, J. and Guibas, L.J., "An 0(n') Shortest Path 'Algorithm for a Non-rotating
Convex Body," Journal of Algorithmns, vol. 9, pp. 18-46, 1988.

[7] Kanayama, Y., "Introduction to Spatial Reasoning," Class Notes, Naval Postgraduate School,
Monterey, California, May 1991.

184

[8 Katb,0 ' Real-Tm bstacI Avoidance foi -Manipulators anid -Mobile -Robots"- The -Inter-
national Journal of Rlobotics R&searchi, vol.5, No.1,, pp9O-98,-1986

[9]: Liu, Y.;H. ,an3d Aimoto, S., "Propooal4 ofTangent- Graph and ExtenddTnetrahfrPh
Planning, of-Mobile Robots," Proceedings- of t"fhf IE EE -International Conference on Robotics
.and Automation; pp. 312-317, 1991.

410]. Lozzano:-Perez, T. and Wesley, M.A., "An Algorithiilfq -Planing Collision-Free. Paths, Amobg,
Polyhedral -Obstacles," CAGMf vol. 22, no. 10, Qct. 1979,, pp. -560-570.

[11], Manber, Udi, Introduction to Algorithms: A Creative Approach, New York, Addison-Wesley,
pp. 204-208, 1989-

[12], Mcfavec, Hans P., "Obstaclje Avoidance. and Navigation in the -Real World by- a Seeing Robot-
Rover," Ph.D:- Thesis, Report STAN-CS-80-813, Siabford- University,, September' 1980.

[13]. Nilsson, N.J.,, Artificial Intelligence, Palo Alto, California, Tioga Press, 1980.

[14] Preparata,. F.P., and Shamos, M.I., Computational Geometry.- An Introduction, pp. 10-11,
Springer-Verlagi 'New York, '1985.

[15] Reif, J. and Storer~, J.A., "Shor~test Paths -in Euclidean Space with Polyhedral Obstacles,"
Technical Report S-85-121 , Brandeis University, 1985.

[16] Sharir, M., and Schorr,. A., "On Shortest Paths in Polyhedral Spaces," Technical Report No.
138 , -New- York University,Courant Institute of Mathematical Sciences, 1984.

[17] Welzl, E., "Constructing, the Visibility Qraph for ii LineSegments in 0(n.2) Time," Inoformation
Processing Lletters, vol. 20, no. 4, pp.' 167-1,71, 1985.

//

-CIO 12 C C

* I i

(Da, ,.

Figure 1: Circle World

Fiuretromo, - C

Figure 2: Tangents from Point to Circle

Figure 3: Tangents from Circle, to ?oint

leaving poIi= a=&ng poiws

Figure 4: Tangents from Circle to Circle

madl-CW-.I

ri ri

12

Figure 5: Cross and External Tangents

Point-to-PoInt Wsiblity Checks

181~.~ *~181< 2 62~

e-

Three reons of possible cirde locatons

* -oinaton (pointl, point2)
61 -orientaion (pointi, cirdexceter) -e
82 !-orientat (.pointZ cirdexceer) -e

Figure 6: Intersection Test

~Ii~fc~ 1 I~i~cle 13
I Circle 4J

0 . circle 13

ro Z l CIr C.

Figure 7: Tangents from Start

;.Ci "3

3. 2. 1

5.* 5 . 2 4

Figure gur 9:Como Tangents from GoneCicl

SwepMeho CW ~re oAl1Cr0e

C\ Is\

Figure~~~Ic 1014Cmo Tnet

191

xss3 P2

P192

It Jo - C~ IO I 4

Circl 4' I

Figure~~~Gjl(irl 121eut4iksr' loih

0193

A* Evluation Function Comparison

b

pathi path2

cost (path 1) + arc-.cOst (a, b, CW + distance (b, goa1) >

cost (path2) + arc.-..ost (c, d, CCW) + distance (d, goal)

Figure 13: Heuristic Function

194

£C 1.9

Cite a15

Cl c i. cisr 17-

,q \ Clo 0 3jItc.3ir 12

*9 palh 11,1 a qo gal lCoot 41.70)/ G 1

Strt

rle20 CI Is

I-

Figure 14: Result: A* Algorithm

195

APPENDIXE CIRCLE WORL D.OURCECODE,
^*

* Filenaie:, circle;&

* Purpose:i Define' structures, typedzfinitions and functions fo*
4* crclwod btics probjev; '

* eference: Advacqed Robotics class-notesi, PrI Yutaka.'Kanayi *

* Author: D6n, B ritzmri *

* Date: :10-February 92 *

* Comments: -circle world is a set 'of, routines for ihobile robot modeling *

* ndqtwo-dimensional path planning. *

All obstacles are modeled ascircles .
* Circlei',are allowed to be-adjacent but not overlapping. *
* Adjacent (t6uching) circles do n6t prevent robot travel
* ~ - along, either circle circumference.

* Language: ANSI C *

* Compile: cc -g -c circle.c -lm .

Graphing: ograph -b -g, 1 -1 .circle.world plot" <. filename- I lpr -g-*

* Status: Shortest path solution complete.

finclude <stdio.h>
#include-<math.h>
#include <ctype.h>

#define CIRCLE.C INCLUDED

/***** Circle-world Global C6nstants **************

#define CCW 1
#define PLUS 1
#define RIGHT 1
#define POSITIVE 1

#define-CW -1
#define-MINUS -1
#define LEFT -I
idefine NEGATIVE -1

#define COLINEAR 0
#define-CENTER 0
#define ZERO 0

#define TRUE 1
#define SUCCESS 1
#define YES 1
#define ON 1

#defi, e FALSE 0
#define FAILURE 01
#define NO 0
#define OFF 0

#define VISIBLE 1
#define NONVISIBLE 0
Idefine TANGENTIAL -1

#define FATAL 1
#define NONFATAL 0
#define UNDEFINED -1

#define PI 3.141592653589793

196

idefine TANGENTS OK TRUE I* whether or not tangentszwhich~pas- adjacent*/

.* -to -other circles aie c6nsidered..VISIBL *I

define EPSILON 1.OE-6 /* efror~bouid-in floating-point calculations ,/

#define ARCFACTOR 1.00 / -factor-that arc lays outside circle plht */

#define TICK_WIDTH 0.50 /* tick width at segment endpoints along-path *

#define GRAPH STRETCH 1.20 /* expansion factor to'6penout graph window */

idefine SUBDIVISIONS 360 /* number of points used t6-graphically
/* represent -circle during file output */

#define-DEFAULT Z 0.0 /* Default pool, depth, legal range 0..8 feet */
/* where zero feet = surface
/* makes circle.auvwoutput data compatible */
/ w With -NPSPoolPreview graphics project. */

4define GRAPH FILENAME "circle.graph" /* name of graph points output file */

#defineAUV FILENAME -"circle.auv" r/ name of high level: output file */

#define TRACE FALSE /* Enable trace printf statements in circle.c */

static float pooltime = 0.0;- /* used to put time hacks on output objects **

/*** List of circle world Data Structures ***** ****** * ******/*

External Data Structures Data'Types and-Member bLabels

Point double x, y;

Segment Point pointl, point2;

Circle Point center;
double radius;

Tangent Circle circle;
double angle;

Arc Circle circle;
-double6 anglel, angle2;
int rotation;

*Configuration 'Tangent tangent;
double orientation;

*Path char *label;
Segment initial segment;
int degree;
Path_list *path-list;

*Circle world Point start, goal;
-nt degree;,
'Circle list *bircle_l'ist;

Internal Data Structures

*Path_list Arc arc;
Segment segment;
Path_list *previous, *next;

*Circle-list Circle circle;
.Circlelist *previous, *next;

,/

' * List of cirdir world Functions *

Functions Parameters

197

error (message- fatal)

make segment (pointi, pboint2)
makecircle- (point, radius);
maketaingent (circle, angle),
make _arc (circle, anglel, angle2, -rotation)Y
create -configuration -(tanjent, angle, configuration)
*crdatepath - (nitial,' se-mnt
create-circle_world (start, goal, circle world)

sign Wx)
degrees -(angle)
normalize (angle)
normalize2 (angle),
~precede (aniglel, angle2)
orientation, (pointl, ,point2)

angle -,,pointl, point2, point3)
S (pointl, :point2, point3)
area (pointi, ,point2, point3)
order (pintl, point2, point3)
'between (pintl, point2, point3)

circumference pioint (circle, angle)
intersect, (segment, circle)
Visible (pointl., point2, circle-world)

circle tangent (cir6 li circle2, model, mode2, *configl, *config2)
arc cost (arc)'
segment cost (segm6En).

augment path. (arc, segment, pat))
add- circle-to-world -(circle, circle--world)
find circlei_ (h, circle worl9)
retrieve circle world (circle woirld)

graph path (path, circle world, filename)
graphworld (circle worldj filename) -
output- path (path, Tilename)
output-world (circle, world, filenaime)
center graph window -(filenaime, xminptr, xmaxptr, yminptr, ymaxptr,

magnification)

See c search.c (circle search)- for additional data :structures and functions.

/***Circle-world Data Structures and Type Definitions *********

-------- ------------------------------------ ;---------------------

typedef -struct Point type

double x, y; /* cartesian coordinate system on a 2D plane *

Point;

/*---------------------------------- -----------------------------------*

typedef struct Segment type

Point pointl, point2; /* Note that a Segment is-NOT just a
/* collection of (double) x, y coordinate *

Segment; 1* pairs, i.e. a segment is a pair of Points*/

/* -------------- .------------------------- -----------------------------

typedef struct Circle-type

Point center;
double radius; /* radius zero circles are considered points *

Circle;

/*---1

typedef struct Tangent type /* all circle-world angles are in RADIANS *

198

Circle circle;
double angle; ft angle- points to the -circle tangent point *

I ~relative to the circle center *

Tangent;

------------ -------- --------- ----------- *

typedef stiuct, Krc type

Circle circle;
double anglel, 1* aniglel points to landing p~oint on- circle *

angle2; /*-angle2-points-.td leaving point_ 6ncircle *
mnt rotation; /* direction-of rotation is-either.CW-or-CCW: *

I ft RIGHT(+) landing tangent => CCW(+) rotation*/
Arc; /* LEFT -)lanuding iing~nt =>) CW H- rotation*/

-- - -- - - -- - -- - - ------- ------- ----------------- T7 ;--- - - - - 1

typedef stru~ct Configuration-type

Tangent tangent;
double orientation; /* orientation .is the tangential orientation, *

- /* i.e. the direction that robot is pointing *
Configuration,

/*----------- ----------- --------------------------- ------ ----------------*

typedef struct Path-list_-type

Arc arc;,- /* arc is fron landing point to leaving point *
Segment segment; 1* segment connects leaving point, either to *

/* next ci rcle -laziding-point,-or to-goal *
struct Path'li,-t type /* continue- this type with doubly-linked list *

*previous,/ of arc/segment combinations until -the *
next; / goal is reached *

Path-list;
-- ------------------------*

typedef struct Path type

char *label; /* optional string label for each -path
Segment initial_segment; /* initial segment leaving start point
int degree; - * number of are/segment pairs in the path *
Path-list *path list; /* linked list of arc/segment combinations *

Path;

/*---------------------------------- -------------------- -------------------*

typedef struct Circle-list type

Circle circle;
struct Circle list type /* continue this type with doubly-linked *

*previcous. / list of remaining circles
*next;

Circle list;
/--------------------- -- *

typedef struct Circle world-type

Point start; /* starting point *
Point goal; /* goal point *
int degree; /* number of circles in this world
Circle-list *circle_list; /* linked list of circles in world *

Ci rcl e world;
/* --- =----------- ------------------------ -------------------- -------------

Scircle-world Function Declarations

/*-- ------------------- *

void error (message, fatal) /* internal error-handling diagnostic *

char *message; /* error message to be printed

199

int fatal; /* exit if FATAL, retuin-otherwis. C

fprin -tf (st derr,. * Program error: "Y;;
perior (message);
fprinitf (stdekr, "Wnn");
if (fatal == FATAL)

fprintf (stderr,. "FATAL error, program exit;\f");
exit (FAILURE);

return;

Point makejon (k, y) /C-make a point from x, -y coordinates C

double x,-y;

Point point:.

point.x x;
point.y Y;

return point;

IC -- - - - -7 ;- - - - - - - - - - - - - - - - -W --- - - - - - - - - - - - - -- --

Segment make-segment (pointi, point2) /*-make a Segment from two points *

Point pointi,, point2;

Segment segment;

segment.pointl -pointi-;-
segment.point2 = point2;

return segment;

I-- ---------------- ------------- I

Circle make circle (point, radius) /* create a circle'from point radius C

Point point;
double radius;

Circle circle;

circle.center =point;

circle.radius radius;

return circle;

IC--l

Tangent make_tangent (circle, angle) /* make tangent from circle & angle *

Circle circle;
double angle;

Tangent tangent;

tangent.circle = circle;
tangent.angle = angle;

return tangent;

/*--- ------------------

Arc maYe-arc (circle, anglel, angle2, rotation)

Circle circle; P* create an arc type from circle data, ~
double anglel, angle2; /* two angles anU a direction of rotation*/
int rotation; I* (CW or CCW) *

Arc arc;

/* initialize values C

arc.circle = circle;
arc.anglel = anglel;
arc.angle2 =angle2;
arc.rotation = rotation;

200

return arc;

1*-- ------ *

void create~configuration (tangent, oriefitation, configuration)-

-Tangent tangent; I* create a- =ormfigukition.type pointer *
double' orientation; /* from-aanent" ad. ai-orientation *
Configuration *configuration; /* resulting configuration output'- 1

if (configuration ==- NULL)- /* allocate, memory if needed

if (TRACE) printf (O\n*** create -configuration: allocating memory"):
if -((configuration =(Configuration *) malloc (sizeof (Configuration)))

-=NULL)

error ("create configuration: memory allocafion failijre-, FATAL);
Y-

111 -initialize values *

c6onfiguration->tangent = tangent:
configuration->o'rientation =orientation;

return;

/*--------------------------- a--------------------- ------------------------ *

static Path *createpith (initial-Segment)

Segment initial_segment; /* begin a path type linked list, using *
/a segment which includes start point *

-static- Path *path;

if ((path - (Path *) nalloc (sizeof (Path))), = NULL)
error ("createjpath: memory allocation failure", FATAL);

/* initialize values *

Oath->label =

path->degree 0;
path->initial -segjment =- initial segment;
path->path-list ((Path-list'*) 0);

return path;

/* -- - - - - - - - - - - - - - - -- - - - - -- - - - ---------

void create-circle-world (start, goal, world)

Point start, goal; /* create, a circle-world using *
I~start and goal points only *

Circle-world i*world; /* resulting circle-world output *

if (world -= NULL)' /* allocate memory if needed *

if (TRACE) printf ("\n*** create circle world: allocating memory");
if ((world = (Circle world *) matloc (sizeof (Circle-world))) - NULL),

error ("1create circle world: memory al-location -failure", FATAL);

/* initialize values *

world->start = start;
world->goal = goal;
world->degree = 0;
world->circle list - ((ircle-list *) 0);

return;

/* -- *

mnt sign (x) /* return sign of x as an integer *
double x;

if (x > 0.0)
return POSITIVE;

else if (x < 0.0)
return NEGATIVE;

else
return ZERO;

201

double degrees (angle) /* conversion fr6mradii~s to degrees */
double angle; I* note no normilizatic'n is performed *

return angle * 180.0 /PI#'

*--- ---- -- -- -- --- ---- --

double normalize (angle) /* standard normalization range o-PI..Pi. *

double angle; /* angle is-any realvalue in RADIANS *

double x;
x - angle;
while (x > PI) x -x- PI -PI,
while (x < -,P1) x --x + PI + P1;
return x;

---*

double normilize2 (angle) /* alternate normalization range O..2*PI *

double angle; /* angle is any real value in RADIANS *

double x;
x - angle:
while Nx> PI + PI) x w x ;.PI - PI,
while Nx < 0.0) x w k + PX + PI;
return x;

/I--------------------- ;--1

int precede (anglel, angle2) /~Boolean.function-for.angle precedence-t/

double anglel, angle2; /* angles are any real angles in degrees *
1* return TRUE if anglel precedes angle2,*/

I' return FALSE otherwise

/* note that the input angles are individually normalized to ensure validity *

if (normalize (normalize (angle2) - normalize (anglel)) > 0.0)
return TRUE;

else P* reference: equation (7) class notes *
return FALSE;

1* -- 1

double orientation (pointl, point2) I' range -PI .. PI '

Point pointl, point2: P~ return normalized angle between points*/

if ((Pointl.x -= point2.x) && (pointl.y -- point2.y))
return 0.0;

else
return normalize (atan2 (point2.y - pointl.y, point2.x - pointl.x));

1* ---*

double distance (pointi, point2) /* euclidean distance between two points *
Point pointi, point2:

double deltax - point2.x - pointl.x;
double deltay - point2.y - pointl.y;
return sqrt (deltax * deltax + deltay * deltay);

/* -- *

mnt angle (pointl, point2, point3) 1* return angle between three points *
/* angle order is pointl. .point2. .point3 *

Point pointi, point2, point3;

return normalize (orientation Cpoint2, pointl) -
orientation (point2, point3));'

/*---*

double S Cpointl, point2, point3) /P calculate S funccion for three points *
/* reference: equation (14) class notes *

Point pointi, point2, point3;

202

/7* CCW, triples-,are positive& CW triples are negative, mAtchingco6nvehtions. *

return 0.5 * ((point2.x - ointl.x) (point3.y - pointl.y)-
(point3.x -pointl.x) ' (point2.y - pointl.y)');

/* -------------- ------ -------- ----------------------.

double area (pointi, pbint2, point3) /* calculate area between three points i/
/- refterencePrpsto .clsnts*

Point pointi, point?, point3;e:rpito3. lsnte*

return fabs (S (pointi, point2, point3)),

/*v---------------;-------------------- ;-------------------------- ;---------

mnt order (ppinti, point2, point3)/* determine order of three points *

Point pointi, point?, point3;/* relationship between three points is *
7* clockwise (CW), counterclockwise (CCW)*/,

1* or COLINEAR *
/* reference: equation (15) class notes *

if (fab's (S (pointi, point?, point3)) <- EPSILON)
return COLINEAR; 7* floating point error chick, correction*/

else
return sign (S (pointi, point2, point3)).;

/*---*

int between (pointl, point2, point3) 1* test for betweenness of point2 *

Point pointi, point?, point3:

if ((order (pointl , point?,.poirnt3) -- COLINEAR) 66

return TRUE;
else

return FALSE;

/* -- *

Point circumference point (circle, angle) /' returni coordin~ates of a point *
' on a circle's circumference ~

Circle circle; double angle;

return make point (circle.center.x + circle.radius * cos (angle),
circle.center.y + circle.radius * sin (angle));

P7--*

int intersect (segment, circle) /P determine if segment intersects circle *

Segment segment;
Circle circle;

/ .eturn: *TRUE** if** any** intersection***exists**within ***the*circle

7' return: TRUE if ny intersections exist within the circle
P' return: TANGENTIAL if only intersection is within EPSILON of the '

circle circumference (i.e. tangential), '
1' TANGENTS OK is defined as TRUE, & neither *
7' segment eindpoint is on the circumference. '

/P local variable declarations *
double height, P' height of circle center from segment *

theta, P' orientation angle of segment '
difference, /P difference between circle.radius and *

/* distance of circle.center to segment *

P* check special case: circle center is on the line segment *
if (between (segment.pointl, circle.center, segment.point2))

if (TRACE) (printf ("\n*** intersect: betweenness case 11);
printf ("(%3.1f, %3.1f) (%3.1f, %3.1f)",
segment.pointl.x, segment.pointl.y,
segment.point2.x, segment.point2.y) :1

if (circle.radius <= EPSILON) P' this accounts for "point" circles '
return TANGENTIAL;

203

Oi se
returin TRUE; /* 'intersection ocdubrred,*

1* determine theta- - orientati66 anigle of segment V
theta -;orientation, ,(segment. point1, . segmnent point 2);

if (TRACE pqrintf (U\n*** intersect: ",

/*,.check case where circle~center ils on right-~hand sideof segment O'/
if (fabs '(normalize (orientation (segment.point2, circle.center)- theta)')

<=(PI/2'.0))

difference -distance (segment,.point2, circle.ceiter), - circlie.iidius;
if (TRACE) printf. ("case I ',
if (TRACE) printf ("orientation 6 %f "

degrees (orientation (iegjment.point2, circle.center));
i f (TRACE) printf ("theta v%f ",. theta);
if (TRACE) printf C"normalize - %f nj

degrees (normalize (orientation' (segment.point2, circle.center))));

else /* check case where circle.center is on left hand side Of segment *
if (fibs (normalize (orientation (segment.pointl, circle.center) - theta))

>- (PI/2.0))

difference -distance (segment.pointl, circle.center) - circle.radius;,
if '(TRACE) printf ("case 2 11);

else /* check case where segment length is zero *
if (distance (segment.pointl, segment.point2) -- 0.0)

difference -.distance (segment.poiptl, -circle.center) - circle.radius;
if (TRACE) pkintf ("case 3, ");

else /* circle.center is in a voronoi region defined by segment edge *

height - area (segment~pointl, segjment.point2, circle~center)
* 2 / distance (segment.pointl, segment.point2);

difference - height - circle.radius;
if (TRACE) printf ("case 4 "1);

1* Now use 'difference' to test for tangency or intersection. *

if (TRACE) (printf ("difference - %f 11, difference);
pegment(% .point3.1fx(3.f %eg 3n.1fitl",

segment.pointl.x, segment.point2.y);
printf (11 circle (%3.1f, %3.1f) "1,

circle.center.x, circle.center.y);

if (difference < - EPSILON) P* circle.radius is greater than the *
return TRUE; /P circle's distance from the segment t

P* thus intersection is TRUE

else if ((fabs (distance (segment.pointl, circle.center) - circle.radius)
<- EPSILON) 11

(fabs (distance (segment.point2, circle.center) - circle.radius)
<- EPSILON))

return FALSE; 1* ignore external tangency of segment endpoints, *
/* because solely trying to determine tangency *

P* with different circles in circle-world *

else if ((abs (difference) <= EPSILON) && TANGENTS OK -TRUE)
return TANGENTIAL;

else
return FALSE; P* circle does not intersect segment *

/*---*

mnt visible (pointl, point2, circle-world)

Point pointi, point2; 1* determine whether a direct path is *
Circle-world *circle-world; /* visible between two points without *

P~ crossing any circles in circle-world*/

204

P* return:, IhSIBLE if no, intersections-exist 4ith ciiclb world
/*-return: 'NONVISIBLE if any ifitersectiorf ekis it,6il ol /
P* return: TANGENTIAL if ,obhly i~teriectibn(s) are--'-ithin'lEPSILON,,of,

1* dircl6ecircumfiene(sY, ioi. 'tane'ntiil' *

1i loca variable declaratiobns *idx NVIBL-oTAETIA

Visibility;, /-VISIBLE, OVSB1 o.AGNA
Segment segment; /* intersectionr of perpendicular '& line-*
'Circle circle; /P local'variable holdingcufrent -circle *
Circle~l'ist *worldpotr; P* pointer to' cuirrent circle

visibility VISIBLE-i /* default initialization,

Segment -- make segment (pointi, point2);
world ptr - iceworld->circle list; /* first circle in world

/*.Note that intersection with circle-world start & goal is not ,checked. *

for (i-l; i <%F circle _rworld-;degree; ++i)*

/* check next circle in circle world'for intersections *
circle - world ptr->circl6;-

if (intersect (segment, circle).- TANGENTIAL)
visibility - TANGENTIAL; 1* i.e. close enough to be a tangent*/

1* continue searching
else if (intersect (segment, circle) an TRUE)

if (TRACE) (printf (11\fl*** Visible complete: NONViSIBLE\n"1);)
visibility - NONVISIBLE;
return visibility;

world ptr - world_ptr->next;

if ((visibility -- VISIBLE) && TRACE)
printf (h\n*** visible complete: VISIBLE\n");

else if ((visibility =- TANGENTIAL) && TRACE)
printf QI\n*** visible complete: 'TANGENTIAL\n");

return visibility;

1* -- -

void circle tangent (circlel, circle2, model, mode2, configi, config2)

Circle circlel, 1* input: Leaving circle where tangent starts *
circle2; /* input: Landing circle where tangent ends *

int model, /* input. which-side of circlel *
mode2; /* input: which side of circle2 *

Configuration *configl, 1* output: starting configuration pointer *
config2; / output: ending configuration pointer *

double alpha, theta, delta, ahglel, angle2; /* local declarations *
Circle circle3; 1* input: Leaving circle where tangent starts *
Circle circle4; P* input: Leaving circle where tangent starts *

circle3 - circlel;
circle4 - circle2;

theta = orientation (circlel.centcr, circle2.center);

/* Simplified delta angle equation originated by LT Scott Starsman USN ~
delta - asin ((mode2 * circle2.radius - model * circlel.radius)/

distance (circle2.center, circlel.conter));

alpha - normalize (theta -delta); /* tangential orientation *

anglel - normalize (alpha -model * PI / 2); /* leaving angle circlel *
angle2 - normalize (alpha -mode2 * PI / 2); /* landing angle circle2 *

if (model -= CENTER)

anglel = 0.0;
circle3.radius = 0.0;

if (mode2 -= CENTER)

angle2 = 0.0;
circle4.radius = 0.0;

205

-if '(TRACE)-
printf,(n-i"* ciicle-,tang'ents: theta %f,. delta %f,~ a~lphh'' .%f, W,~

-d~grees '(thetag)., degee (dl 'degrees (alpha);
if (TRACE), pintf '(7 rg~ %,ar'l2= fi"

degrees 4(anglel), degrees- Cangle2))

configl->tangent =iake tanigent (circle3, angkel);
configl->orienitation ilphi;*
config2->tafigent -make,.tangpnt (circle4,. aiigle2)';
qohfig2->6rientation alpha;

return;'

-- - - - - -- - - - - - - --- - - - - - - - -- - - -1-- -

double arccost .(arc) 1* euclideandistan~e-cost ,function'

Arc arc; P* rotation-direction isi included in arc

double delta- angle;

if (arc.rotation -"CW)
delta angle - normalize (arc.anglel) - normalize (arc.angle2);

else if (arc.r 'otation - CCW)
delta-angle - normalize (arc.angle2) - normalize (arc.anglel),;

else if (arc.rotation - ZERO)
delta-angle - 0.0;

else

delta angle - normalize -(arc.anglel) - normalize (arc~anglo2;
print!f (11\nlllegal rotation value (%ld) 'given to arc cost fu~nction.",

Assumed CLOC)KWISE.\nI, arc.rotation);

/* circumference portion -2 * Pl '*,R * (delta angle / (2 *PI))

return arc.cirele.radius *normalize2 (delta angle);

P1--------------------------- ;------- ;----------- ------------------------

double segment cost (segment) /* euclidean distance cost function

Segment segment;

return distance (segment.pointl, segment.point2);

1*---*

void augment path (arc, segment, path)

Arc arc; /* add arc and segment to path
Segment segment; P* the order of adding an arc followed *
Path *Path; /* by a segment is a rigorous requirement*/

Path list *path-ptr; /P index pointer to legs on the path *
Path-list *path_ node; /* local variable to build path leg *

if'((path node = (Path -list-*) malloc (sizeof (Path list))) -= NULL)
error (I"augment pafh: memory allocation failuri!11, FATAL);

/P initialize values of path node which will augment current path
path node->arc - arc;
path-node->segjment - segment;
path-node->next - ((Path list *)0);
path-node->previous - ((Path-list *)0);

if (path->degree == 0) /* first path in path-list to be added *
path->path-list = path-node;

else

/* point to first leg of path, then find end of current path-list *
path ptr = path->path list;
while (path ptr->next 1= ((Path-list *) 0))

path ptr - path ptr->next;

/* now augment current path with new path leg
path node->previous - path ptr;

206

pathptr->nixt -path -nrode;.

path- degre*+;,.
if '(TRACE)'

,p'rinitf(1\n** path->degree =%i,,, augment ,path,,complet4 h%'. 15h-.>de4ree);
r~turn;,

Void add circl,_to world_ (ci'rcle, ciicle world) -

'6ircle. circle; /* 'circle to-be added'to wbrld
Circle' world *circle~world; /* current 'circl4-w6rd *

Circle list circle. ptr; /* index ,pointer,'tb -current circle
Circl'els *iclnoe /* lo'cail- variab~e to-build circle leg ~
double separatioi 'I* u'd'to check & prevent circle 6verrip*!

if (TRACE),printf (i"\n*** add circle to~world start\n19v;

if ((circle-no'de -(Cir~le list *)jmalloc ,(sizeof (Circle list))) -- NULL)
error ("add-ci'rcle-tolorld meoy loato-failure", FATAL);

separation m distance (circle.center, aircle world->start);,
if ((separation - ciicle.radius) < - EPSILON)'

printf("~\n*** add circle to-world: the now circle at ("1);
printf(!1%4.2f, ,472f) \n7 , Firole.cienter.x,

ciicle.centei.y);
printf ("is not being added; because it 'Overlaps the start point");
printf("l at (%4.2f, %4.2f) \n\n", circle world->start.x,

circle world->start.y);
return;

separation - distance (circle.center, circle,'world->goal);
if ((separation - circle.radius) < - EPSILON)

printf(t"\n*** add circle to world: the new ,circle at (1");
printf("%4.2f, %472f) \n"l, circile.center.x,

circle~center.y);
printf ("is not being added because it overlaps the goal point");
printf(" at (%4.2f, %4,.2f) WWIn, circle world->goal.x,

circleworl d-goal.y);
return;

1* initialize values of circle node which will. be added to circle world *
circle node->circle Z circle;
circle node->next : (,(Circle list *) 0);
circle node->previous -((Circle list *) -0);

if (circle world->degree -= 0) /1 irst circle in circle-world to be added*/
circle world->circle list - circle node;

else

/* point to first circle in world, then find end of current circles *
circle ptr - circle-world->circle list;

while (circleptr->next !- ((Circle list *) 0))

separation - distance (circle, center, circleptr->circle. cent ar);
if ((separation - circle.radius - circlejptr->circle.radius)

-EPSILON)'

printf(a"\n*** add circle to world: the new circle at (C");
printf("1%4.2f, %472f) \nW, Zircle.6enter.x,

circle. center. y);
printf ("is not being added because it overlaps the circle");
printf C" at (%4.2f, %4.2f) \n", circleptr->circle.center.x,

circle ptr->circle.center.y);
return;

circle'ptr = circlejptr->next;

/* now check that pesky last circle *
separation - distance (circle.center, circlejptr->circle.center);
if ((separation - circle.radius - circlejptr->circle.radius)

<- EPSILON)

printf(1\n*** add-circle-to-world: the new circle at (11);

207

j~kintf("%4.2f, %4.2f) \n", circle ceniter.x,
dcircld.center.y);

prinif ("is hot beingladded 'because it -6verlaps .the. circle");-
preintf (" at *(%4-.2f,'%4.?f) \n\n", circlejt->cicl;cnter.x,,

return;ciicl*e ptr-75circl enter)

1* now add new 6ir~cle-;node to currenit -circle'lIist in~cirdle.--world *
circle no'd6-pevioiis= icl-''
circleyptr ->next- =,circle node;

circle worla7dgree++;
if (TRWCE),printf (w*n*** circle,,world7-idegre- %in

circle 'world-7>degtee)-
if (TRACE). printf-irY*** add~circle'to world 6onipiete\n");

return;

Circle 'find',ciicle (n, circle~world)

mnt n; /* get the nth circle from circle world *
~Crclbworld *circle world;

mht i, nn;
Circle circleO;,
Circle list *circleptr;
nn =n.

if (circle world->aigree--0)

printf (;I\n*** find circle: there are no circles 1.n circle world;",
"\n usin-g the ~start point as a zero-radiius circlei.\n");

ci~rcleO-= 'make' circle--(circle -world7>start, 'O.O)';
returi circleO7

while ((nn <- 0) 11 .(nn > circle world->degree)),

printf (9\n*** fiidcircle: there are %d. circles in circle-world.',
circle world->degree);

printf (1, WhicF do you want?)
s'canif ("Wd", &nn); printf (11\n");

/* ready to go; point to first circle in world, then find n-th, circle*

circle' tr -circle world->circle'list;
while 1(i < nn),&& Tcirclepti->nixt !- NULL))

circlejtr circle ptr->next;

return circle_ptr->circle;

void, graph_,path (path, circle-world, filename)

1* Print path data for vinix 'graph' use, appended to. 'filename'

Path *path;
Circle world *circle-world;
char *filename;

FILE *file ptr;
double begin angle, end ~angle, delta angle, angle,

midpo~nt x, midpo&int, xl, yI, x2, y2;
mnt i, J, n,7rotation; 7* indices, # arc steps & local variable *
Point point;
Circle arc circle;
Path-list *Pat~iptr; /* index pointer to legs on the path *

if (TRACE) printf (I\n*** graph-path start\n");

if (path =-NULL) printf (n\n*** path - NULL, error!\n1);

path ptr =path->path list; /* point to first leg of path

if ((file-ptr = fopen (filename, "a")) -= ((FILE *) 0))

error ("1graph path: file open failure!", NONFATAL);
return;

208

J* print starting line segmient *
if (TRACE) 'prifitf T' %f %kf\n", p0ath">iniial S-egient.pinitl.x,

- path->initial-serneot.poihtlk');
-if (TRACE) printf- C" f .f\n\" \!"\n", path->initial _segment.06iht-2,x,'path->iniitial_ segment.point2.yY,
fprinitf (file-ptr, "'%f- %f~n", pth iitaleg enpitlx

pi ntf(file path >l nitial segin~nt.pointl.y);-
pint (fletr,. - AfY,9k\n\" \"\n, path- >initial seginnt.point2.x,

path Ainitial segmfent.point2.y);

1Print tick marks-perpendicular to endpoint-of initial segment i/
i ((pt->initial' seg'en.poin't2.x .=circle -world >startx-'
'(path->initial~sement.'6int2.y 1= cicle-orld->start.y)) &

((path->init ial sgent.poiit2.x !6' circleworld- >goal.k) . 1
(path->;initialsegment.poirit2.y != circleworld->goal.y)))

angle =orientation .(path-> initial segment .pointl,
p'ath->irditial'seigne'nt.po6int2) + -(PI/2.0);

xl -path->initial segment.point2.x - (TICK-WIDTH / 2.0) * cos (angle);
yl - path->initiilsget.point2.y, - (TICK WIDTH / 2.0) * siin (angle);
x2 = pathL-~initia-segmrent.point2.x + (TICKWIDTH-,/ 2;0) *ccs (angle);
y2 -.path->initialsegmnent.point2.y + (TICKC WIDTH-/ 2.0) *sin '(angle);
fprintf (file_ jt r, 11%f %f\n %f tf\nV'\"n" -l, yl, x2, y2);'

if~TRACE),print f ("tickmark at end of initial segment: \n");
if (TRACE) printf (", %f '%f \n I f f\n\11 \"\h",- xl, yl' 2 2;

Pt Print path label adjacent 'to midpoint of initial segment *
midpointx =x (path->initial segrnent,.poinitl.x +

path->initial7segment .point2.x) / 2.0;
midpoint-y (path->initial segment.pointl.y +

path->initialsei nt.p6int2.y) / 2.0;
if (TRACE) printf"- %f If\Th', midpoint x, midpointj),-
fprintf (file ptr, "1 %f %f\h ,, midpoint-x, midpoint~y);

if (TRACE)

if (path- labblY - NULL) printf (11\"%s \11-\n1, -path->label);.
else, printf ("\1 \11\n11);

if (j ath->label !- NULL) fprintf (fileptr, !'\'%s \'\n", pa th->label);
else -fprintf (fileptr, 11\10 \"\n" V

/* print all succeeding arc / line segment combinations
for (i-1; i <= path->degree; ++i, path ptr =path pti->nex t)

/* Calculate and plot arc traversal points- *

begin angle - normalize2 (pathytr->arc.anlel)-;
end angle - normalize2 (path ptr->arc.angle2)1*
rota5tion =pathptr->arc.rotati6n;

if (fabs (begin angle 7 end angle) <= EPSILON)
delta angle-- 0.0;

else if ((precede (end angle, begin angle) &&(rotation =CCW)) i
(precede (begin angle,_end angle) ~&(rotation -=CW)))

ele delta-angle - P1I + Pi - fa~s (end-angle - begin-angle);

delta angle = rotation-* (end-angle - begin angle);

-delta-angle normalize2 (delta angle);,
angle =begin angle;
arc-circle -path ptr->arc.circle;

n - (int),((float) (SUBDIVISIONS) * fabs (delta angle) / PI + PI) + .5);
if ((delta angle -- 0.0) 11 (n <- 0) 11 (rotation -CENTER))

n -0;.- /* perform only one iteration of loop
else

/* Print first point of arc without ARCFACTOR for con~tinuity *
point - circumferencepoint (arc circle, begin angle),
fprintf (fileptr, "%f %f\n", point.x, point.y);
if (TRACE) prl-ntf C"%f %f\n", point.x, point.y);

if (TRACE)

printf ("\n*** graph~path n = %d, delta-angle =fn"
n, degrees(ae4lta angle));

printf (begin angle %f, "

degrees (begin angle)T);

209

printf ("end.-angle %kf. rotation~i lk~n
Uegrees, (jenidangle), rotation);

J/*,Factoir adius-'t6 graph ak6 just oiitside,.tikcle cirdimf~rdn~e *
arc circle.iadius *'- ARC -FkCTOR; -

1* calculate and print pints for the ~arc -stiit i ,fom, initia'anl'*
fbr -'(J = 0; j <-+n;al age~*

if (TRACE) printf (u*graphjpath: :j = %d, angle-= %f'. ni- %d \n%,.
jdegrees j(angle); fi).;

point = circumferencepoint '(arc--circl6 angle);

if '(n !=0) fpkifitf -(file-ptr, "%f %f\n"j point.xi point.y);
if ((n !=0) &&- (TRACE)).prlntf ('%f %f\n", point.x, poinit.y);
if (n !=0)- angle 4- (rotation *delta'angle/ '(double) h);
angle = n6rmalize2 (angle);

Y'
/* 'calculate and'print points for the segment following the arc
point' = paihjptr->segjment.pointl'; ,
if (TRACE) printf (" %f %f\n", -point.x, poiit.y);

point - pathjtr->segment.point2;

,if' (TRACE) .prTntf ("%f.1tf\n\" -\"\n", ,poifit.x, point.y);

/* Print tick mark perpendicular to- start point of current segment *
if ((pathptr->egmentpointl.x I-circle world->start:,x) 11

(pathptr->segment pointl.y 1 circle-world->start y)) &&
((pathptr->segment.pointl.x 1=circle world->goalix) H1
(pathpt'r->iegment.pointi.y I-circle-world->goal.y')))

angle - orientation (pathptr->s~gment.pointl,
path ptr->segment .point2) + (PI/2.0,

xl -,pathptr->segmenit.poTilix - (TICK WIDTH,/1 2.0)' * cos (angle;
yl =,path ptr->segment.pointl y - (TICKTwIDTH / 2.0) * sin (angle);

x2 ~patytr>sement.pointl.x + (TICk-WIDTH / 2.0) * cos (anigle)
y2 -path ptr->segment.pointl,.k + (TICK-WIDTH /2.0) * sin (angle);

if (TRACE) printf (1" %f'tf\n %f %f\n\" \1nxl, yl, x2, y2);

1* Print tick mark perpendicular to final ,point of current segment '
if (((path ptr->segment.point2.x I- circle world->start.x) 11

(path~htr->segment.point2.y !'-'6ircl'e~world->starty) &
((pathptr->segment. point2.X !7 6ircl67wdrld->goal;x) 11
(path ptr->segment.point2 y 1= 'irclewoirld->goal.y)))

angle = orientation (path ptr->segment.pointl,
path ptr->segment.pointi2) + CPI/2.0);

xl --path -ptr->segrnent.point2.x - (TICK WIDTH /-2.0) * cos '(angle);
yl - path ptr->segment.point2.y - (TICK-WIDTH /2.0) * sin (angle);
x2 -'path ptr->segment.point2.x + (TICx7WIDTH /2.0) * cos (angle);
y2 - path-ptr->segment.point2.y + (TICk'7WIDTH,/ 2.0) *, sin (angle);
fprintf (file ptr, 11 %f %f\n %f %f\n\"t \"\nvf, xl, yl, x2, y2);'
if (TRACE) prlntf (11tickmakk at end of current segment: \n");'
if (TRACE) printf ("1 %f %f\n %f %f\n\" \",\n!', xl, yl, x2, y2);

fclose (file ptr);
if (TRACE) pirintf (om\n*** graph path complete\n");
return;

/*------------------------- ---------- ---------------------- --------- *

void graph world (circle-world, filename)

/* Print circle world data for unix 'graph' use, appended to filename *

Circle world *circle wiorld;
char *filename;

FILE *fileptr;mnt i. J;1 /* indices *

Circle list *circle ptr; /* index pointer to current circle *
if (TRKCE) printf (in\n*** graph world start\n");
circle ptr = circle-worl d->circle list; 1* point to first circle in world *

if ((file ptr =fopen (filename, "all)) == ((FILE *) 0))

210

error _("graph_,world: file open failure!", NONFATAL);.
return;-

if (TRACE) printf C" 6f,%f\n", cikcle.,woild->start.k, circle world->start.y);
if (TRACE) ,printf("\". Start\"\n");
-fprintf(filejptr, " %f %f\h", cicewrd-satx circleiworld->start~y) p

if (TRACE) printf ("' %f %f\n", circle~world->goii~x, 6ircle world-:goal.y);
if (TRACE) printf C"\". Goal\"\nr);-
fprintf(file-ytr, " %f %f\n",, circle world7>4oal.x, ciicii world->goal.y);

1* Loop. to gr~aph all circles in circle world.
for (i=l; i' <= circle world->degree; ++i, circle. ptr =,circlLptr->next)

1*print current circle6 center *
if (TRACE) pif("%f .%f\n", circlet-cicecnerx

.circlejptr->circle.center.y);
fprintf (filepti, "%f %f\n", circle~ptr->circle.center.x,

circlei ptr->cir6le. centcr.y);
if (TRACE) printf -C"\"1. Circle %d\"\n", i); P* label center wI circle *
fprintf (file ptr, "\11,. Circle %d\"\n", i); /*,label center w/ circle *

1* print circle circumference at intervals - 360 / SUBDIVISIONS *
for (J-0; j < 360 + (360 / SUBDIVISIONS); j +- 360 I SUBDIVISIONS)

if (TRACE) printf C" %f %f\n",
(circle 'tr->circle.center.x +

circieyptr7>6irdle.radius * cos (j * P11I 180.0)),
(circlejptr->circle.center.y +

circledptr->circle. radius * sin (.1 * PI / 180.0)));
fprintf (file-ptr, 11 1f -1f i9',

(cir~le ptr->circl6.center.x +
circlejtr7>6irle.radius * cos (j * PI,/ 180.0)),

(circle ptr ->circ16.cefiter.y' +
circle ptr->circle.radius * sin (j * PI I 180.0)));

If (c irclejptr->circle.radius -0.0)
break; /* only one point needed in point case ~

if (TRACE) printf (11\" \"1\n"1):/* quoted bl'ank to'delimit this circle *
fprintf (file ptr, 11\1 \11\n11); /*,quoted blank to delimit this circle *

fclose '(file ptr)';
if (TRACE) printf (-1\n*** graph-world complete\n");
return;

/* -

void output-path (path, filename)

/* Output path in AUV data file format, appended to filename

Path *path;
char *filename;

FILE *filej~r
mnt i,/ * indices
Path list *Path ptr, /* index pointer to legs on the path *
if (YRACE) printf Cut\n*** output path start\n");

path ptr = path->path list; /* point to first leg of path

if ((file ptr = fopen (filename, "all)) -= ((FILE *) 0))

error C"outputjpath: file open failure!", NONFATAL);
return;

if path->labelA'= NULL)

fprintf (file~ptr, "1\nPath %s\n\n", path->label); /* path header *
if (TRACE) printf ("1\nPath %s\n\n", path->label); /* path header *

else

fprintf (file ptr, 11\nPath \n\n");
if (TRACE) prlntf C"1\nPath W I;

P* print starting line segment data *

211

)fprintf -(filejtri "Segmfent 68.2f,%8.2f %8.2f, tM2f %8.2f 468.2f' 1
path->initial. sebgment-.poizitl .
DEFAULT. Z,
patb- iiitialr.segmeit .poirit2.x,
-path_>initi'al-segmnent.point2.y,

if (TRACE) printf ("Segmeft- %8.f%48.2f 18.2f 18.2f, %8.2f-%8.2f!"i

path7>initia1 segientt.point2.x*
path-5,nitialsigment. point -.y,
DEFAULT Z);

pooltime++; EAT_,-;

if (TRACE) printf 0" time %4.1,f\n". -pooltirne)';

f*print -all succeeding- arc /. line segmenit, comiinations *
for (i=l;'i <= path->degree; ++i,, path ptr-- pathjptr->next)

~if (pathptr->aic.rotation 1=0)- -/' don't print arc-if nothing's-there *

fprintf (file~ptr. "Arc %8.2f %8.2f %8.2f %8.2f,,%8.2f %8.2f-%21 ,

pathptr->arc. circle.center.xi
pathptr->arc. cir'cle.center.y,
DEFAULT Z,
pithpt7->arc.circle. radius,
degrees (normalizie2 (pathjptr->arc.anglel)),
degrees (nornnaliz62 (path ptr->arc~angle2)),
pathpr->arc.rotation);

pooltimet+;
if (path ptr->arc~r6tation -=CW)

fprintf (file'ptr, "=-'CW- *iime'%4.lf\n", pooltirne);
else if (path ptr->arc.-rotation - C6W)I 0

fpriiitf (fileptr,, 11= CCW time %4-.lf\n, ppoltime);
els if(pahMtr->arc.rotation,-6CENTER)

fprintf (file ptr, "-CENTER time %4.lf\n", pooltime):
else fprintf (fileptr, "ti me %4.lf\n" pooltime);,

if (TRACE) printf ("Arc -. %8'.2f %8.2f %8.2f %8.2f %8.2f %8.2f %2i1"
-path ptr->arc. circle. center.x,
pathjtr->arc. circl e.center.y,
DEFAULTZ,
pathptr->arc. circle, radius,
degrees (normalize2 (path ~ptr->ar6.anglel))i
degrees- Cnormalize2 (pathpt'r->irc.angle2)),
path.,ptr->arc.rotation);

if (TRACE)

if (pathptr->arc.rotation -- CW)
printf -("= CW time %4.lf\n", pooltime);

else if (path ptr7>arc.rotation -- CCW)
printEf ('1= CCW time %4.lf\n", pooltime);

else if (path ptr->arc.rotation -- CENTER)
printf 0-a CENTER time %4'lf\n", pooltime);

else printf ("time %4.lf\n", pooltime);

fprintf (fileptr, "Segment %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
pathptr->segment .oointl .x,
path ptr->segment.pointl .y,
DEFAULT Z,
'path Ptr->segment .point2.x,
path ptr->segment .point2 .y,
DEFAULTZ);

if (TRACE) printf ("Segment %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
pathptr->segment .pointl .x,
path ptr->segjment.pointl .y,
DEFAULTZ,
pathypt->segment .point2 .x
path ptr->segment .point2.y,
DEFAULT-Z);

pooltime++;
fprintf (filejptr, "time %4.lf\n", pooltime);
if (TRACE) printf C"time %4.lf\n", pooltime);

212

if (TRACE) printf '(6~~6utptpath compleiekn");
'fclos (filept)
Iketurn;

/*~ --- -----

void output world (circle world, -filenaae)-

/* .6titput circle world' using- AUV data file formnat, irpeided' to filenaffe~/

Circle world *circjejqorld;
char *i~ae

~FiLE, *fileptr;
mft i " .? /*,indices *

Circle iist *cirleptr.; /* index' pointer to current circle
cir'cl6Dptr -circle w'orld-circle ls; / point to first circle in world *
if (TRACE), -printf W~* -output';World start\n"';

if *((fileyptr F fopen (filename, Iar)_) 7 ((FLtE *)0))

error- (output world: file open failure'", NONFATAL);
return;

"\, Circle World Shortest P'athDetermination~nn");
fprintf (fileptr, 1"\nData specifications6 are according to ";
fprintf (fileptr, 1"theAUV DataDictionary.\n\n\nII);
if (TRACE)

printf 11"\n Circle World -Shortest Path Determination\nMn");
printf ; \nData specif icaitions' are according ~ ''

printf ("the--AUV'Data Dictionary.\n\n\n")

fprintf (file ptr, "Point A%8.2f %8.2f %7.2f",circle world->start.x,
circle world->start.y,

fpritf. (fie, tr, 1 Sart~"); DEFAUL;T-Z)

if (TRACE) printf ("Point %8-.2f %8;2f %7.2f -", circle wo'rld->start.x,
circle -world->s~art.k,

if (TRACE) printf C"' Start\n"); EAf-Z)

fprintf (file~ytr, "Point 0'.2f. %q.2f %7.2f ",; circle world->goal.x,
circle world-5goal .y,

fpritk (ile~tri !, Gal~nn ; DEFAULTZ) i

if (TRACE) pr~ntf ("Point %8.2f %8.2f %7.2f 11, circle world->goal.x,
circle world->g-oal.y,

if (TRACE) prinitf (" Goal\n\n");- EA17')

if (TRACE) printf ("~\n*** output world circle world->degree - %d \n"I,
circle world-5degree);

for (i-1; i <- circle-world->degree; +44i, circlejptr = circleyptr->next)

1* print circle center and radius
fprintf (file ptr, "Circle %8.2f;'%8.2f %8.2f %8.2f \n",

circle .ptr->cir 'cle. center.x,
circle ptr->circle. center.y,
DEFAULTZ,
circle pt r->circle. radius);

if (TRACE) printf ("Circle- %8.2f %8.2f %8.2f %8.2f \n",
circle_ ptr->circle. center.x,
circle ptr->circle. centdr.y,
DEFAULTZ,
circleptr->circle. radius);

if (TRACE) printf ("1\n*** 'output world complete'in");
fprintf (fileptr, "\n");
fclose (file ptr);
return;

/* -- ------------

void center graph window (filename, xminptr, xmaxptr, yminptr, ymaxptr,
magnification)

/* center (square off) the graph window so printed circles aren't distorted *

213

char *fjlenm;_ 1* graph filename f6k input i output *
-double *xi-npk *knaxptr,. P output values, -(alio appefided. to- file) *

*ymjnptr, 1*ymaxti-t anf rphwno ons*
P~nfct~;1 an-ount omgiy4a wnobuds*

-FILE *file.-Ptri
int col; -P1 current column being ibsed ini line *t/
char - line [80],; 1* 4input line string of characters A
double x, y; P' input. Values-from current line-
double xmin, xmax, yrnin, ymaix, /* min/max Value. *

deltax, deltay; P* x, y max-mm differences *

if (TRACE). pintf .(\n***' centerw_graph -window i tart\n");

xmih HUGE VAL: 1 Typical-graph ticks are 5-units. apart*1
ymifi HUGE7VAL;
xmax =-HUGE VAL;
yznax =-HUGE-VAL;.

if -flpti = fdpen. (filename, "r!)) (FLE*0)

error ("iceniter graph-window: file initial-opeh failure!", NONFATAL);
return;

if (TRACE) printf ("fi*i* center _graph window: ts is apen\n",. filename);

while ((fgets--(line, 81, fileptr) !- NULL))- /* read next lin~e of file *

col =0;
while (line [cal-] ==') col+i-; J* skip initial- blanks *
if (isdigit(line(col)) 11 (line [col] ~= -)-I(line (cal) 4'

ii (line [col] -- 1f))

if .(sscanf (line+col,- %lff",&x) !1 1) break; /* get x gracefully*/

.whi'le (isdigit ((int) line [cal]) 11 (line (coll 11'')I
(line, (cal] =- I.,')- I I (line lcol] 1+

cal++; J/* skip digits of x
while ((linefcol] =') III (line (calf- I ==)

col++; !* skip characters before-y *

if (sscanf (line+col,"%I' f",ry) != 1l' break; /* get y gracefully*/
if Cxmin > x) xmin x;if. Cymin > y) ymin y;
if (xmax -< x) xmax x;
if (ymax < y) ymax- y;
if (TRACE)printf("'\n*** center graph window loop check:");
if (TRACE)printf(' (x, y)=(%6.7f, %672f) ", x, y);
if (TRACE)printf("l (xmin, ymin)=(%6.2f, %6.2f)", xmin, ymin);
if (TRACE)printf(11 (xmax, ymax)-(%6.2f, %6.2f)", xmax, yMax);

/* only lines beginning with numeric values are checked
/ end while */

if -(TRACE) prinitf (1'\n****center graph window while loop done\n "-
if (TRACE),printf ("(xmin, ymin) = (%67.2f, %6.2f) ", 'xmin, ymin)i
if (TRACE) printf ("I(xmax, ymax) -(%6.2f, %6.2f), ", xmax, ymax);

/* Now square off 'the extremes so no distortion occurs *
if ((ymax - ymin) < (xmax -'xmin))-

ymax -yrnin + (xmax xmin);
else if ((xmax -xmin) < (ymax -yinin))

xmax xmin + (ymax -ymin),-

if (magnification != 1.0) /* stretch out graph window boundaries *

deltax -xmax - xmin;
deltay - ,ymax - ymin;
xmin - deltax * (magnificatian - 1.0) / 2.0;
xrnax 4= deltax * (magnification- -1.0) / 2.0;
ymin -- deltay *'(magnification - 1.0) / 2.0;
ymax 4-deltay * (magnification - 1.0) / 2.0;

if (TRACE) printf ("\n*** center graph window square-off)
if (TRACE) printf ("and magnific-iian camplete:\n
if (TRACE) printf (1"(xmin, ymin) - (%6.2f, %6.2f) ",xmin, ymin);
if (TRACE) printf ("(xmax, ymax) =(%6.2f, %6.2f) ",xmax, ymax);
if (TRACE) printf ("1\n";
if (TRACE) printf .('*magnification - %4.2fn, magnification);

xminptr = xmin; 1 set returned values using painter indirection *
*yminptr = ymin;

214

*Xnax~ptr =xmax;
*yraaptr =ymax;

fclose (filejpti);
if ((ile-ptr - fopen (filename, 'a")) -- ((FIELE))

error ("center ~graph window: -file ~re-open fiilure!", NONFATAL);
-* return;

1* append min/max poifits to file to square off graph boundaries *
if ((xmin != HUGE VAL), && Cymin != HUGE VAL)) -

fprintf (file_p~r, " 18.2f 418.2 -f\n\'! \"' n", xmin, ymnin);-
if ((max !- - HUGE -VAL) && Cymnax !- - HUGE VAL,))

fprititf (file~jitr, - t8.2f 98.2f\n\" \"'n", xmax, yziax);.

fclose- (fileptr);
if-(TRACE) printf (Il\n*** center:;_graph -window compplete\n");

return;

void retrieve-circle-world (circle-world)

Circle world *circle world;

char filename [40], line [120];
FILE *file. ptr;
double x, y, r;
Point startypoint, goaljpoint, centerpoint;
Circle circle;

if (TRACE) piintf ("\n*** retrieve-circle-world begin\n");

printf ("ii~nEnter the name of the circle-world file to retrieve:)

scanf -("%s", filename)-;

while W(ilejptr = fopen (filename, "r")) == ((ILE *) 0))

error ("retrieve circle world file open failure...\n ", NONFATAL);
printf ("\nPleasej reentegr the name of the circle w-orld file)
printf ("to be retrieved:';
scanf ("%s"l, filename);

while- (TRUE) /* loop to get start point *

if (fscanf (filejptr, "%sl", line) = -EOF) /* read start point *

error ("retrieve-circle-world start point read failure", NONFATAL);
return;

else if (strcmp (line, "Point") -- 0)

fscan f (fileyptr, "%lf -%lf", &X, &y);
start point = makepoint (x, y);
if (TRACE)

printf ("\n*** Start point - (%4;2f, %4.2f)\n", x, yi;
break;

while (TRUE) /* loop to get goal point *

if (fscanf (file_ptr, "ts", line) ==EOF) /* read goal point *

error ("retrieve-circle-world goal point read failure", NONFATAL);
return;

else- if (strcmp (line, "Point") -- 0)

fscanf (fileptr, "%If %lf", &x, &y);
goal-Point --makepoint (x, y);
if '(TRACE)

printf ("\n*** Goal point - (%4.2f, %4.2f)\n", x, y);
break;

create-circle-world (start-point, goal point, circle-world);

while (TRUE) /* loop to get next circle ~
if (fscanf (file ptr, "1s", line) -- EOF) /* read next circle *

215

break;

else if (strcmp (line,, "Circle") == 0)

fscanf (file ptr, "%lf %lf %*If %if", &x, &y, &r);
center point- makeypoint (x, ty);*
circle - make circle (centerpoint, r);
if (TRACE)
printf ("\n*** Circle - (%4.2f, %4.2f, %4.2f)\n", xe y, r);
add circletoworld (circle, circle-world);

if (TRACE)

printf ("\n*** circle world start point - (%4.2f, %4.2f)\n",
circle world->start.x, circle worl4->start.y);-

printf ("\n*** Eircle world goal poinZ - (%4.2f, %4.2f)\n",
circle world->goal.x, circle world->goal.y);

printf ("\n*** Eircle world degree - %d\n",
circle world=>degree);)7

if (TRACE) printf (I\n*** retrieve circle world complete\n");
fclose (fileptr);

return;

--

216

* Filename: csearch.c circie-search' *

* Purpose: Determine single source shortest path using Dijkstra or A'star *
* search algorithms for a circle'world rob6tics pioject.
* *

* Reference: Advanced Robotics class notes, Dr. Yutaka Kanayama. *

* Author: Don Brutzman *

* Date: 10 February 92

* Language; ANSI C *

*' Compile: cc -g -c c.search -lm, *
* *

* Comments: circle world is a set of routines for mobile robot modeling *
* and-two-dimensional path planning. *

* All obstacles are modeled as circles. *

* Status: Shortest-path solution using Dijkstra's Algorithm or *
* or A-star search complete. *

/* Include next 3 statements in this order for any circle-world application: */

#ifndef CIRCLE.C INCLUDED
$include "circle.I"
fendif

#define MAX CIRCLES 100 /* determines size search -& tangent matrices */

#define START 0 /* indices in search and tangent matrices *1
#define GOAL 1

#define MARKED 1 /* boolean values */
#define UNMARKED 0

#define DIJKSTRA 1 /* Search types
#define A-STAR 2

define TRACE FALSE P. Enable trace printf statements, c-search.c *1

/***** List of circle search Data Structures and Functions ******************/

1,

Data Structures Data Types and Member Labels Matrix namp

Tangent matrix element int visible; tangents (n][n]
double segment cost;
double leaving-angle;
double landing angle;

Search matrix element int mark; search [n)
int predecessor;
double least cost;
double landijg_angle;

Functions Parameters

initialize tangents and search matrices (search type, circle-world,
all tangents)

updateunmarkedleastcosts (marked-node, circle-world)

unmarked-vertices

unmarked circle with minimum cost (search type, plot each-leg,
circle-world)

217

[iicludes-A-star -evaluation, function

of ar6 &- segment,'diitance ,to' 4oalJ:

buildLbest.ath (cfrclesworld)

circle search (search type, plot each leg,
ciicle-world, ..
best.pth, all tangents)

/****** Circle search Data Structures, Type Definitiofis &,Global Variables *

/* ---- -------------- ------ ----------------- ------------ ---

typedef struct, Tangent.matrix element.type

int visible; /* whether segment is VISIBLE, NONVISIBLE, */
/* or TANGENTIAL

double segment cost; /* cost of this tangent segment */
double leaving-angle; /* angle leaving from i th circle
double landihg angle; P angle landing on* Jth circle

Tangent matrix_6lement;

/* ------------------------------------ ------------------------------------ *

static Tangent matrix element tangents (2*MAXCIRCLES+)[2*MAXCIRCLES+];

/* tangents */ /* square global tangent matrix of tangents and costs *1
* zeroth element corresponds to Start point s
/* first element corresponds to Goal point G
/* second element, corresponds to circle 1 CW side.
/w third element corresponds to circle 1 CCW side
* (2n) element corresponds to circle d CW side

P (2n+l) element corresponds to circle d CCW side */
P* where d - circle world->degree *1

/* column-i circles are the leaving circles
P row j circles are the landing circles '/

/ circle CW sides have even indices */
/* circle CCW sides have odd indices */

/* Note that travel is impossible between the */
/* CW & CCW sides of an individual circle. */

/* Also note ,that tangents [i)(J and tangents (J(i] */
/* are determined independently. This allows the use */
P* of a directionally dependent cost function
P without loss of generality. */

/* --- *

/*---*

typedef struct Searchmatrixelement type

int mark; * boolean whether shortest path is found */
int predecessor; /* circle or (start point) preceding circle */
double least cost; /* least cost found so far to this circle */
double landing angle; /* angle landing on this circle

Search matrixelement;

/*---*

static Searchmatrixelement search [2*MAX_CIRCLES+11;

/* search */ /* matrix used to perform single source shortest path W/
/* search (DiJkstra's algorithm) */

/* --

static int n; * Number of active indices in tangents & search matrices */
P n = 2 * circle world->degree + 1; */

static int total-visible;

218

/t total number of tanigents- visibl6 in th6 s6 t 61f all *7
1* poisibl6,.external & 'ciossti6'gents,, betweeh:jthe

1*start point, goal -point 'and, circ~les ir{ circle w.orld,*

static Ant leg number '0;
/* .6ccurrence~ number of'latest leg With-least cost

-- -- -- - - - - - --

/**i Circle search Function Declarations ***********

void initialize tangents and search matrices :(search type, circle world,

int search type; /* DIJI{STRA or A-STAR
Circle world,*circle world;
Path *all'tan5gents;

int i, J, model, n~ode2; /* indices and rotation modes
mnt START GOAL, visible2; /* logical checks
double angle;. /* working variables
Point pointl, point2;
Segment segment;
Circle circleO, circlel, circle2;
Arc arcO,
Configuration *confJ,gl, *configz;

pointl.x -circle world->start.x - 0.3; /* offset x, y for tangents label *
pointly circle world->start.y - 0.8;
segment make-segment (pointl, pointl),

all tangents->label -All visible tangents-between circles included";
all tangents->degree . 0;
all tangents->initiil Segment - segment;
all tangents->path hiit - ((ath-list *) 0), /* NULL *1

configl -(Configuration *)malloc (sizeof(Configuration));
config2 -(Configuration *)malloc Csizeof(Configuration)):

total-visible - 0; /* initialize visible tangent count *

/*------------------- Tangents matrix initialization--------------------/

if (TRACE)

printf ("\nn");
printf ("_____________________

printf ("_______________________
printf ("\nn");

printf("\n\nComnencing least cost path determination using "1);
if (search type DIJZ3!STRA) printf ("Dijkstra "1);
else if (search type -STAR) printf ("A-star "1);
else printf ("circle-$');
printf ("search... .\n\n\n");

for (i - START; i <- 6; ++i)

if Ci -- START)
circlel - make-circle (circle world->start, 0.0);

else if (i -- GOAL)
circlel - make circle (circle world->goal, 0.0);

else circlel = find-circle (i/2, circle world);

if CM -- START) 11 (i -= GOAL)
model - CENTER; /* circle-world start & goal points *

else if (i -- Ci / 2) * 2)
model - CW; /* even -> CW side of circle *

ele model = CCW; /* odd => CCW side of circle *

if (TRACE) printf C"-\n Tangent____
if ((RACE -= TRUE) &&CTFi>- 10)) pr-intf (1
if (TRACE) printf(

Visibility Circles__ -___Coordinates-____ _Cost_");

for C START; j <= n; ++J) /*----------------------------------*

219

Sf (j i- START)'
;ciic162.- i- make- circle, (circle wilrd->start, 0O';

else 'if (3 - GOAL) -_

circ'leZt -make circle. (circle worid-5goal, 0. 0);
else cirdle2 -=-find-circle .(J/2"" circle,.4orld);

if ((j - START)' I I (j= GOAL))
mode2-= CENTER; /* circle world start .& goal, point *

else if (j -= (j .1 2) 2)
mode2 r CW; /* even => W -side-of, circle *

else
mode2 =6 CCW; /* odd =>CCW side o6f circle *

if (M - START fif3 - GOAL) 11 (1 -6 GOAL j&3- START))

START GOAL - TRUE;
tangents [iJIj.segment cost - distance (circle world->start,

circle world->goal);

else STARTGOAL -FALSE;

if ((1/2 -- J/2) £&(START-GOAL -- FALSE))
/* IMPOSSIBLE diagonal case: same circle, Start-Start, Goal-Goal*/

tangents (i)[J.Visible -NONVISIBLE;
if ((Ci -- GOAL)&&(j -- GOAL)) I'I (C(i -- START)&&(3 - START)))

tangents ,iV'(J).segment cost -0.0;
else

tangents ,[iJj].jsegment Cost -HUGE VAL;
tangents (iJ[j].leaving angle 0- ;7
tangents (i (3) .landing angle - 0.0

else /* all other non-IMPOSSIBLE cases *

circle tangent (cirolel, circle2, model, mode2,. configl, -config2);

pointi - circumference point (circlel, configl->tangent.angle);
point2 - circumfe'rence-poirt (circle2, config2->tangent.angle);
segment - make segment _(pointl, point2);

tangents (i (3) .visible - visible (pointl, point2, circle-world);

/* Calculate costs if VISIBLE & save segment cost value
if ((tangents (i)(Ji.visible'-= VISIBLE) 11

((angents (i)(JI.visible -- TANGENTIAL) && TANGENTS OW)

tangents (i)(j).segment cost - segment cost (segment);
total-visible++;

/* add a segment to path containing only tangents *
angle - orientation (pointl, point2) + (PI/2.0);
circle0 - make circle (pointl, 0.0);
arcO - make arc (circle0, angle, angle, 0);
augment-path (arcO, segment, all tangents);

else P5 segment is NONViSIBLE, no cost calculations required ~
tangents (i)(j).segment cost - HUGEVAL;

if (J -- GOAL) /* get distance-to-goal A* evaluation function ~
/5 regardless of vi 'sibility ~

tangents (i)(j).segment cost - segment cost (segment);

tangents (ii [j) .leaving angle =configl->tangent.angle;
tangents (ii (3) landing angle = config2->tangent.angle;

if (TRACE)

printf("\n*** tangent [%dHj%d) ", i, J);

if (J < 10) printf (11 1);
if ((i/2 - J/2) && (START GOAL == FALSE))

printf ("IMPOSSIBLE");-
else if (tangents (iflj).visible -VISIBLE)

printf (" -VISIBLE");
else if (tangents (ii (11.visible ==NONVISIBLE)

printf ("NONVISIBLE'i;
else if (tangents [ii [3).visible ==TANGENTIAL)

220

printf (TANGENTIAL!'!;

if (U == 0) prfintf '(" S ');. /oieavingcircle,.#
else- if (i i):prihtf (" "); .
else ,printf (-%d 1, i/2)}

if (model = -CW)- prifitf (!'CW.");
else if' (mdel == CCW) printf ("CCW. "Y;
else if (model i= CENTER) pr~i~f (PT' ");'
elseprf ("'P "I

if (j -= 0), printf ("S "); * landing circle #
else if (J - 1) printf (G,); .
'else printf (0%d ", Ji22;

if -(mode2 - CW) printf ("CW-");,
else if (mode2 = CCW) printf ("CCW")
else if .(mbde2 -= CENTER) prih tf ("PT ");
'else printf " ");
if ((i/2 !- J/2) I (START-GOAL -= TRUE))
C

printf C" (%5;2f,%5.2f),..(%5.2f,%5.2f)",
pointl.x, pointl.y, point2.x, point2.y);

if (C tangents [ij)].visible -- VISIBLE) II
START GOAL -- TRUE) II

((tangeRts [i)[j).visible -- TANGENTIAL) && TANGENTS OK) II
((tangents (i](J).visible -- NONVISIBLE) && (j --'GOAL)))

printf (" %4.1f", tangents [i][J].segment cost);

/* Change TANGENTIAL to VISIBLE or NONVISIBLE as appropriate */
if ((tangents [i)[JI.visible -- TANGENTIAL) && TANGENTSOK)

tangents (ii)[9.visible VISIBLE;
else if (tangents ('i).visible -- TANGENTIAL)

tangents Ci) [-J).visible = NONVISIBLE;

/* for j loop complete *1
if (TR,.,E) printf ("\n");,

/* for i loop complete */

/*------------------ search matrix initialization ---------------------

for (i - START; i <- n; ++i)

search (i).mark - UNMARKED;
search (i].predecessor - NULL; /* impossible initialization value */
search (i).least cost a HUGE VAL;
search (i).landiTg_angle - 0.0;-

search [START).mark - MARKED; /* Start point found by definition */
search (START).predecessor - START; /* initialize remaining, slots
search [START).least cost - 0.0;
search (START).landiwg angle - 0.0;

printf ("\n\nTangent and search matrix initializations are complete.\n");
printf ("\n\n%d out of %d potential tangents (%3.lf %%) are usable.\n\n",

total visible, (n * n + 1),
100.0-* (float) total visible / (float) (n * n + 1));

return;

1*---*

void update unmarkedleast-costs (marked-node, circle-world)

int marked node;
Circleworld *circle-world;

int new, /* index for checking each new node */
rotationl, /* rotations for first & second circles */
rotation2,
sign_secondarc; /* MINUS PLUS or ZERO */

double new cost,
angfel, /* marked circle landing angle
angle2, /* marked circle leaving angle
angle3, /* new circle landing angle best so far */
angle4; /* new circle landing angle latest

Arc first arc, second arc;
Circle first-arc circle, second-arc circle;

if (TRACE)

221

printf "~n* pate unmarked',least costs vis~ible f roi node, d 7%

if (marked node = START)

else if (markeid node =='="GOAL)
-printf C (g6al~pit";

else ~piintf ("(ci'rcle %d", -(marked node/2)),
'if ((marked node'!- GOAL) && (mar~ed~iode' ! START)- ifi

'C (marked node-/2) *2,' ='marked nodi))
printf 07 CW left side)");

else if ((marked npode !: GbAL) &&A marked nbdef1 START))
printf (" -CCW right side) "j

printf (11:9;

for (new =GOAL; new <-n;,t+iew). I* loop through all 61remehts *

/* Calculate total cost to new circle via marked node-circle l/

if (marked node ==START)
first airc circle - make~circle (circle world-5'start, 0.0);

else if (markb~no~e'-GOAL)
first'arc'citrcle -'mike circle (circley~wrld->goal, 0.0);

else first arc~circle w find-circle (marked-node/?, circle world);,

anglel =search (marked node] .laniding angle;
angle2 tangents (mark'ed-ho'de](new] .eaving angle;

if (marked node -= (marked node / 2)'* 2
rotati'gnl - CW; /* even node -> circle CW side *

else
rotationl -i CCW; /* odd node r> circle' CCW side *

first arc - make arc (first-arc circle, anglel, angle2, rotationl);

/* Calculate cost difference due to different landing points,*

if (new =- START)'
second arc ~circle = make circle (circle world->'start, 0.0);

else if (new -GOAL)
'second arc circle - make circle (circle world- goal, 0.0);

else second arc circle - find-circle (new/2, circle wol)

angle3 - search .(newhlIanding angle; /* prior best angle *
angle4 = tangents (marked node) (new] .landing angle; P* latest angle *

if (new -- (new.! 2) * 2)
rotation2 - CW; '*even node -> circle CW side *

else
rotation2 - CCW; /* odd node -> circle CCW side *

second-arc - make-arc (secohd arc circle, angle3, angle4, rotation2);

if ((search (new] .predecessor ==NULL) 11
(search (new).predeceszor START))
sign second-arc = ZERO; P~ no arc exists if no predecessor *

else if ((precede (angle4, angle3) 6& (rotation2 ==CW)) 11
(precede (angle3, angle4) &4 (rotation2 -=CCW)))

ele sign second-arc - MINUS;/*this arc-cost applies to prior best*/

sign second arc = PLUS; /*this arc-cost applies to current *
/* --- *

/* After all this work. we finally can add up costs for comparison *

new-cost = search (marked node) .least-cost +
fabs (arc cosCtfirst arc)) +
tangents Tmarked-nodeT~new] .segment cost;

1* --- *

if (TRACE)

if (new == GOAL) printf ("n Goal: ",new);

else printf ("n node %d: ",new);

if (new < 10) printf (" 11);

if ((marked-node/2 == new/2) && (new I-START)
&& (new !=GOAL)

printf ("IMPOSSIBLE");

222

else it 'jtafgents ,[mirked node) (niew] visibre, ii- VI~ikBL'),

else if '(tangent's (marked iiddejfliiew)'..visible = NONVISIBLE)-

else-if ,(ta'ngents [markedd'node-(ne;] .VisibleD ==ANdENTiAL)-
-printf- ("TANGENTIAL")

if (search; (new) .nark -M'ARKED) printf 0' MARKD1),;.
else if -(iearch '[new].mark =-,UNMARKED) -prihtf (11 UNMAAKEb');

-itf ("'prlbri $eft cost)-'

if ((bihjejlat ot >- 0-O)-t
i((search (hew].leastcost < 10.0V),) -rintf'C)

printf ("%f ",.-search' [iWew].least.i cost);
if '((search (new] .least cost IF HGE VAL)) printf O(inite");

if ((tangents (marked,.nbde] [new) .visibie --- VISIBLE), &&
(search Inew).m~rIE= UNMARKED))

,printf (", new cost");
if ((new cost >- 0.0), &

(niew cost + (Tabs (arc-cost '(second-arc)') i sign second-arc <' 10.0)).)
PrTptf (11-1) ;

if (new cost -- HUGE-VAL) printf 0" 11);
printf T"1%f"11

' new cost + (fabs (arc cost (second'arc)) * sign-.second arc));
if (60ecost -- HUGEVATJT printf ("inTtelf);

Y'
/* ------------------ 7--------7------- ------------ -------L;-----------------*

/* Compare and- replace if new cost is better than current cost *

if ((tangents (marked node] (new) .visible -- VISIBLE), &
(search (new] .marr- UNMARKED) &
(new cost >- 0.0) &&
(searEch (newj.least cost >

new-cost +i (fabs (arc cost (second arc)) * sign-second arc))

search (new].least cost -new Cost;
search (new] .predecessor : marlied_-node;
search [newhlIanding- angle -

tangents (marked node] (new) .landing angle;

if (TRACE)

printf ("\n*** update unmarked least_costs via node %kd ",marked-node);
if (marked node *Z- START)-

printfC(" (start point)");
else if (marked node - GOAL)

printfC(" (goal point)");
else printf ("(circle %d", (marked node/2));
if ((marked node 1- GOAL) && (marlred node !=START) &

((markeU node/2)*2 -i- marked nodh))
printf ('1 CW left side)");

else if ((marked node !- GOAL) && (marked-node I-START)
printf '7" CCW right side)");

printf ("1 complete.\n");

return;

/*---'

mnt unmarked-vertices 0) 1* boolean value for remaining unmarked vertices *

mnt i;

for (i -GOAL; i <- n; ++i) /* Don't check START 0~, default is MARKED *

if (search (i].mark -- UNMARKED)

if (TRACE)

printf ("\n*** unmarked vertices check result = TRUE; '1);
printf ("unmarked vertices exist.\n");

return TRUE;

223

if (TRACE)

printf (n\n***.unmarked ve rtices check result! ALSE; i)-;
printf ("fio un~marked veritices remai.";

return-FALSE;

nt -unmarked circle with_-minimum cost (search type,- plot each~leg, 6iicl6--world)

intsearch I %typ'6; *DI3KStRA or A STAR *
plot eich leg;. P TRUE oi. FALSEC -*

Circle-world *cii6Te wo'Eld;- P/ ffiput:,- all circles *

1* includes-A-star evaluation function of arc t segment distance to-goal *

int 1i, least circle, /P working variables, declaration */
model,'nmide2, last, last2;

double min cost, eval, eAl
static char 1b [1;
Point poir~tl, point2;
Circle circlel, 6iicle2;
Arc arcl,, -a 69;
Segment segment;-
Configuration *configl, *config2,
Path *current leg,

configi - (Configuration *)malloc (sizeof (configuration),);
config2 - (configuration *)malloc (sizeof (Configuration)),

min cost v-HUGEVAL;
leastcircle - START; /i this initial value isn't possible*/

if (TRACE),
printf ("\n*** unmarked circle with minimum cost determination:");

for (i - GOAL; i <- ni *+i) P* Don't check START 0, default is MARKED *

if (search type - ASTAR) /* then calculate evaluation functions *

/*~Determine evall: previous best mm c ost circle "least-circle" *

last - search [least circle).predecessor;
if (least circle -- START)

circlel - make circle (circle world->start, 0.0),;
else if (least circle -"; GOAL)

circlegl i--make-circle (circle world->goal, 0.0);
else circlel =i find-circle (least cEircle/2, circle-world);

if ((least circle -- START) 11 (least-circle -- GOAL))
model Z CENTER;

else if (least circle -- (least_6ircle/2) * 2)
model-- CW;

else model - CCW;

arcl - make arc (circlel,
- tangentuz [last] (least circle) .landing-angle,

tangents (least circli)(GOALJ.leaving-angle, model);
evall - min cost + arc cost (arci) +

tangents (least circle] (GOAL] .segment cost;

/~-Determine eval2: current min-cost circle "ill------------------*

last2 - search (i) .predecessor;
if (i -- START)

circle2 - make-circle (circle-world->start, 0.0);
else if (i - GOAL)

circle2 =make circle (circle world->goal, 0.0);
else circle2 = find-circle Ui/2, circle-world);

if ((i - START) 11 (i -- GOAL))
mode2 = CENTER;

else if (i - (i/2) * 2)
mode2 - CW;

else mode2 = CCW;

arc2 = make-arc (circle2,

224

tangents ;ij'rGOAL .eiing Sigle;. md2):;;
eval2'~ search [i] .'leasf' cost + arr6cst (a'Ec2) +

/* Determine, if cuiient circle 'beat s previous- 'est mim cost..6ircle, .- /

if (search. (i-j'.mark = UNMARKED)]*Evaluate whc,'6his mnifi ,cbst ~'
'if ((searchtype-=DIJKSTRA) &&(mn _cost >_ search ti'].listcost))'

jI((search type==A STAR), T,& (miri- ost'!-HUGE' VAL),&4 (evall56Vil2)),
Ii ((search 7typ61== A7STAR) &4 '(min_,66st-=HUGfVAt) &&

mm cst =(search ji] .lbast 'cost I= HUGE"VAL)))-
min cost earch-[ij.16ast_cost;,

'leajst circle : i

/*TRACE statements for each loop,............................-
if ((RACE) (sear~h' Ci].mark:-- UNMARKED)'

if (i -=GOAL) printf ("\n Goal: "i, i);
else printf ("\n node %id: ", i);
if (i, < 10)' printf'("")

if (search'type ==DIJKSTRA)

printf ("current cost "1);
if'.((search (i).least cost >- 0.0) &

(search [i).leait cost < 10.0)) printf(' ~)
if (search (i] .least cost -- HUGE VAL) printf ()
print 'f ("ifl" 'Search [i) least co st);
if (search (ilfeast cost Z- HUGE VAL) printf ("miite");

elseJ -A''STAR /

'prihtf ("distance to goal "1);
if ((tangents ti,) GOAL].segment cost + arc cost (arc2) >- 0.0) &

(tangents [i) (GOAL),.segment-cost +,arc cost (a'rc2) < 10.0)')
printf ("1 1) ;

if (tangents Ci) (GOAL).segment cost-- HUGE-VAL)
piintf ("1 "1)

printf ("'if"l, tangents [i) CGOAL].segment cost + arc cost (arc2));
if (tangents [iGA)3qetcs- HUGE VAL)-

print f ("mite");
printf ("1, current evaluation function "1);
if ((eval2 >=0O.0) && (eval2 < 10M)) printf C)
if ((eval2 -7 HUGE VAL) printf (C" ");
printf ("'if", eval2f);
if (eval2 -- HUGE VAL) printf ("miite");

printf ("1\narc cost (arc2) - 'if". a~rc cost (arc2));

/* -- - - - - - - - --;- -- - - - - - - - - - - - -- - - -- - - - - - - -

if (plot each-leg -- TRUE) /* plot this minimum cost leg in graph file *

last - search (least circle) .predecessor;
if (last - START)

circlel - make circle (circle world->start, 0.0);
else if (last -GOAL)

circlel - make circle (circle -world->goal, 0.0);
else circlel - findcircle (last/2, circle-world);

if ((ast =~START) 11 (last -- GOAL)
model -CENTER;

else if (last -- (last/2) *2)

model =CW;
else Imodel -CCW;

if (least -circle -START)
circle2 = make circle (circle-world->start, 0.0);

else if (least circle -7 GOAL)
circIF2 - make circle (circle world->goal, 0.0);

else circle2 - find~circle (least-circle/2, circle-world);

if ((east circle =- START) 11 (least-circle - GOAL))
mode2 ZCENTER;

else if (least __circle == (least-circle/2) * 2)
mode2 =CW;

else mode2 =CCW;

225

6ikcle-tiin4ent -(circiel, circle2, model, mode, configi confi4?)4I
6ir leT -cofifigl->tafigent. circle;,
6ircli2 iionfig27>tangint.circle;6,

7pointl -circumferencejoint(cre, ofl-tngnane);
point2 =cfrcumferen6e pointi (cir61le2,, config2->tangent. angle)-;
segmnent make segment'A (Pintl-;. pint2)

-cuirent-leg.,i &ieace~path (segment).;
eTg. num e I

sprlritf' (label, "Tg dleg. nufibir) ;.
curren~t leg->label ='label;.
graph-paith (currefit leg, c'ircle world, GRAPHFILENAM~E);-

/-TRACE statements for completion -------------------- --

if .(TRACE)

printf (f\n*** unimarked'circle~with 'minimum cost: node %d",,
least ci~cle)';

printf (" with-currenEt cost %f;", inin cost);
printf. ("\n "i
if (least-circle -- GOAL), printf ("(GOAi)");-
else - -printf ("
pinftf C" node %d is now-marked and his- node-td-,

lea'st dcice,,search [least-circle] .predecessor);,
piintf (11 as- its--preaecessor.\n");

return least-circle-,

*------------------ -------------------------------- ------- ------ ----------

void *build best path,(circle-world, best path)

Circle world *circle world; /* work from goal' to start 4,bUild path *
Path *best path; /* using predecessor 5- least-cost *

-- /P results from circle-searcE *

int circle, predecessor,
current, rotation;,

double anglel, angle21
static char label2 (40);

Point pointl, point2i
Segment segment;
Circle circlel, circle2;
Path list *pathptr, *new leg;

if (TRACE)

printf ("\nn"); - -i)
printf (1______________________

printf (" f)

printf ("\n\nI");
printf("\n***-build best path: work backwards from goal to start.\n");-

best path->path list - NULL;
best path->degrje - 0;
sprintf (label2, 11 Best path (cost %4.1f)",

betI search [GOAL].least_cost);
betpath->label - label2;

predecessor - GOAL; /* initialize: algorithm begins-at GOAL *
point2 - circle-world->goal;

while (predecessor !- START) /*,proceed backward until START reached *

current =predecessor;
predecessor search (predecessorj .predecessor; /* take one step back *
if (TRACE)

printf C"\n*** build best path: predecessor - %d, current = %"
predecessor, current);

printf (", adding path leg to list.\n");

if (predecessor - START) /* returned to START, best path built *

pointl = circle worldw->.tart;
segment - make sligment (pointl, point2);
best path->iniTial segment = segment;

else /* construct & insert another path leg *

226

if 4(prediicessor ==-START)
diiel6 = make circle (circle world-start, 0.0);

else if (predeceissfor *=7 GOAL)-
circiel = makei circle -(circle, world-5goal.i -0;.0);

else circiel -i findfcircle (prede~ssok/2, ciicle~world);

if (current START)
4cirdle2 =make,circle ,(circle_.world->start, 0.0);

else, if (&urrent G=- OAL)
circle2 - zake dircle (circle world;->4al, 0.0);

else circl62 findcicle (currenEt/2, ciicl wo'rld);

alel- =,search [predecessor) .landing angle; -

angle2 z- tangents [predecessor] (currentT. leaving angle:

/* Determine rotation ass'ociated with starting circle
if, .((predecessor :F TARTr). II (predecesior -GOAL) I

(circlel.radius =0.0))
ele rotation =-0;-

eleif (predecessor - (predecessor /2)-* 2)
rotation- = LEFT;

else rotation = RIGHT;

new leg = (Path list *) malloc (sizeof (Path list));
new-leg-)arc '='ake' arc '(circlel, Anglel,_,angle2, rotation);

pointl circumferencepoint
(circlel, tangents[predecesso:] [current] .leaving angle):

point2 d ircumference-poiht
(ciVrcle2,-search (curreint).landing angle);

new leg'->segment -a make segment (pointli pointl);

/* set up for eVentual construction of initial path segment *
point2 - circumference point '(circlel,. anglel);

/* insert new-leg, at head of the existing path list *
path .'ptr =,.best path->Path list;
betpt-pt lis new leg;
best path-5degree++;
if (path ptr != NULL)'

path ptr->previous- new leg;
new leg->previous, NUL;
new' leg->next =pathjptr;

if (TRACE)

printf (!\n*** build bestpath: complete~nn");
printf ("____________________
printf (11 I)

printf ('I\n7_n"); -

printf (11\nThe best path from start to goal has cost =fnf"
search (GOALJ.least cost);

printf (" \nThe best path includes arcs around -d circle obstaclel,
best path->degree);

if (bestpaEh->degree -- 1) printf (11.\n");
else priritf ("s.\n");
printf('\n\nLeast cost path determination using circle-search complete.");
printf (11\n\n1);
printf (1_______________________
printf (1 10);
printf ("Wn");

return (best-path);

1* ---------------- -- *

/* --- *

/* Determination of best path through circle world-using Dijkstra's or A-star *
/*search algorithms for single-source shortest paths.

/* Reference: Manber, Udi, Introduction to Algorithms - A Creative *
1*' Approach , Adgison-Wesley Publishing Company, Reading,
1* Massachusetts, 1989.

227

void circle-search (search--type, plft-each ledg, circle-woild-,
b~stjpith, all, tangents)

int search~type. /*. 'DIjkSTRA 'is a greedy' algorithm *
P" A STAR' evaluates -distance- t-a'oa.V

'plot each-leg; &a'TRUE -or-FALSE.
Circle-world *circle world; -/*,'input: all circles '
Path - *best~pith, /*.output: best path'.stait-to goal *

*'all tangents; Ia' output: 1. visiblWe- tangenit segments a/

int w; /*-declaration for-minimum--6ost node '

n = 2 *'-circle world->degree + 1; /a' initialize-global total: 2a' circles-*a/
I' (CW & CCW) plus-'START and GOAL *
/a- See declarations for'index details *

/ begin Dijkstra's or A-S tar Search Algorithm--------------------------'

initializet angents and search-matrices- '(search-type, circle-world,
all-tangents);

update unmarked least costs (START, circle world);

while (unmarked-verticesC)

w - unmarked -circle -with~minimum-cost (search type, plot each-leg,
circle_world); -

search [w].mark zi MARKEDb;

if (w == GOAL) break;

update -unmarked least costs (w, circle world);

build best-path (circle-world, bestjpath);

return;

/* -- - - - - - - - --- - - - - - - -*-- - - - - - - - - -- - - - - - - - - -

228

* Fjlena-e:- circtest.c circle world

* Purpose: Test program to evaluate circle 4orld circle6.c &c e a rceb.c);
* functionality for circle world--robbtics project.-

* -Reference: Advanced Robotics class notes, Dr. Ikutaka Kanayama-

* Author: -Don Brfitznan

-* Date: 10 February 92

* Language: ANSI C -

* Compile: cc -g -o circle-world circtest.c -1m

* Execution: circle-world

* Graphing: graph -b ;-g 1 -1- "circle world" < circle.gra h I lpr -g -

*-Additional graph details are available usling manual--pages,
* i.e. 'mangraph' and-'man plot'.

* Comments: Circle- world is A set -of routines for mobile robot moideling *

* andtwd-dimensional path planning.-*
* Circle search performs-minimum cost path circle search using *

* Di j~stra' s algorithm.*
* Circle test aillows entering circle world data, computing.

* extirndl and- cross-tangents, checking visiblility, and-.
* determining a least-cost path from start to goal.*

* All obstacles, are modeled as circles.*

Staus: Near-optimal complexity, shretpath solution complte

* Segments and- arcs sequentially numbered using time parameter *

* -,to optionally allow graphic visualization-,of search process*

/* Include the-next -3 lines in this order 'or any circle world application: *

#ifndef CIRCLE. C INCLUDED
#include "circle."o
#endif

#include "c-search .c

#include <time.h>

1*--*

main C)/* circle-test *

/*--------------------------------------- ------------------------- -------*

/* Declarations and initializations: *

double x, y, r;
double xmin, xmax, ymin, ymax; /* min & max values *
char answer = 'y-',

title [80], /* string array for graph title *
command (160), /* string array for system commands *
date (32], /* string for today's date *
label' (40]; /* string for path label *

time-t today;

int model, rnode2, /* rotation directions *
i, J, k, /* indices *
copies,

search type, / DIJKSTRA or A STAR search *
plot eaich-leg; /* TRUE or FALSE-

Point start, goal;
Point pointl, point2, point3, point4;
Segment segmentO. segmentl, segnment2;
Circle circlel, circle2;
Tangent tangentl, tangent2;
Arc arcl, arc2;

229

Configuration *configl, *config2;,
Path *pathO, *pathl -*path2;,
Circle list- *circle ptr;
Ciicle-woild *circle-world;

/* instantiate default paths3 using a'ps6udo-iegment instantiate config's *

pointl.y ci 0;0;
segmenti 6 make segment (pointi, pointi);
pathO create~yath (segmenti);
pathi create~path (segmeriti);
path2 -create,_path (segmenti);

configl -(Configuration 5)malloc (sizeof (Configuration));
config2 -(Configuration 5)malloc (sizeof'(Configuration));

circle-world -(Circle world 5) MAlloc (3iZ6of (Circle-world)),

/5--- -- /

/* Introduction and file reset: *

printf ("\nl");
printf ('.'H)
printf (1 11);
printf ("\n\n11);
printf (11\n
printf ("circle~c is a library of routines for mobile robot modeling "1);

printf (11\n
printf (11 and two-dimensional path planning.\n");
printf C11\n 1)
printf ("circlesearch performs minimum cost path circle search Using,,);
printf ("\n
printf (C" Dijkstra or A-star search algorithms)
printf ("n 0)
-printf T1 and-Euclidean distance cost function.\n");
printf ("\n
printf (11 circle-world allows entering circle-world data, computing 10);
printf ("\n
printf (1" external and cross-tangents, checking Visibility, and ")
printf ("n)

printf (1" determining a least-cost path from start to goal. 0)
printf ("\nn");
printf (1 I');

printf ("_______________________

printf ("\n\n\nDo you want to retrieve a saved circle-world file? "1);
scanf ("tc", &answer);
if (answer -- 'y' 11 answer -- 'YI)

retrieve circle world (circle-world);
if (circEle world !- NULL)

pointl.x - circle world->start.x;
pointl.y - circle world->start.y;
point2.x - circle world->goal.x;
point2.y - circle world->goal.y;
printf ("\n\n Start point - 0%5.2f, %5.2011, pointl.x, pointl.y);
printf ("\n\n Goal point - (%5.2f, %5.2f)", point2.x, point2.y);
prinif ("\n\n Circles in circle world: %d",

circle-World->degree);-

else

printf M"nRetrieval of the circle-world file was unsuccessful.");
answer - I'

printf ("\nn");
printf "\nRemoving previous copies of circle-world output files:");

printf ("nrm %s\m", GRAPH FILENAME);
sprintf (command, "rm %s", GRAPH FILENAME);
system (command);

printf ("in %s\m", AUV FILENAME);
sprintf (command, "rm ts", AUV FILENAME);
system (command),

/--/

230

/* Enter circle world start point, goal point and circle data: *

if (((answer ='y'). fif (answerI= iY',)), I I (circle -world =- NULL)),

printf ("\n\nEnter the staft point k and y coordinates.\n\n");
printf (" start x -")
scanf ("%If", &x); /* note %If to convert -to double precision *
printf (11 start y =
scanf ("Wl", &y);
pointl - make point (x, y);

printf ("1\nEnter the goal point xand y coordinates.\n\n");
printf. (11 goal x -
scanf ("%If", 6x);
printf (" goal y -
scanf ("%ilf", &y);
printf ("WnI);
point2 - make point (x, y);

create "circle world (pointl, point2, circle-world);
answer

/* create a segment and a path direct from start to goal

start - pointl;
goal a point2;
segmentO - make segment (pointl, point2);
printf ("\n\nStraight-line path from start to goal cost -%4,2f\n",

segment cost (segment 0));
pathO - create path (segmento);
sprintf (label, "Straight line start to goal (cost - 42f=

segment cost (segmentOfl;
path0->label - lbel;

if ((answer- ly' 11 answer -- IV) && (circle world->degree >- 1))
/* true if circle-world file was read successifully

scanf (11c", &answer); /* hack to clear carriage return from buffer *
printf ("\n\nDo you want to enter another circle? 11);
scanf (11c", &answer),

while ((an~.wer -- 'y' 11 answer -- 'II 11 (circle world->degree < 1))

printf ("\n\nEnter circle # %d center coordinates & radius.\n\n",
circle world->degree + 1);

printf (11 cir~le # %d x - " circle world->degree + 1);
scanf ("Wl", &x);
printf (" circle I Wd y - ",circle world->degree + 1);
scanf ("Wl", &y),
printf (11 circle # %d r - ",circle world->degree + 1);
scanf ("Wl", &r);
while (r < 0.0)

printf ("1\nPlease enter a non-negative radius value: "1);
scanf ("W"f, &r),

printf ("WI");
pointl -make point (x, y);
circlel : make-circle (pointl, r);
add circle to world (circlel, circle-world);

scanf ("W'", &answer); I* hack to clear carriage return from buffer *
printf ("Do you want to enter another circle? "1);
scanf ("W'", &answer);

printf ("WI")
printf (" l)

printf ("______________________I
printf Vl\n\nl);

/* Circle world data entry complete. *

1* Output circle world in .graph point pair format and .auv data format
graph world (circle world, GRAPHFILENAME);
output world (circle-world, AUV FILENAME);

/* -- 1

/* Test visibility from start to goal, followed by point pairs of interest: *

if (visible (circle-world->start, circle world->goal, circle-world)

231

- TRUE)
printf ("\nThe start and ~goal points are VISIBLE to- each othe~. \n'11)

else if (visible (circle-world->start, 6ircle .w6rld->joal, circle~world)
-- TANGENTIAL)

printf (n\nThe start and goal ,points are VISIBLE to each other and -r),;
printf ("\ntheir line segment is TANGENTIA L to one ormore circles)

prifitf ("in circle world.\n");

else printf ("\hThe start,&L goal points are NONVISIBLE to each other.\n"l);,
printf ("n\n");

scanf ("%c", &answer); /* hack to-clear carriage return,-from buffer
'printf ("Do you want tocheck visibility between other pairs of points?)
scanf ("161", &answer);

while- (answer -- IyV II answer- 'YI)

printf ("\nnEnter the first point coordinates.\n\n");
printf (11 first X
scanf ("%If", Wx)
printf (1" first y-';
scanf ("%lf", Ly);
pointl - make point (x, y);
printf ("\n\nEnter the second point coordinates.\n\n");
printf (11 second x -
scanf ("%lf", fix);
printf (1" second y -
scanf ("Wl", &y);
point2 - make~.point Cx, y),

printf("\n\nThe distance between the two points 0 - nnl
distance (pointl, point2));

printf(11\nThe orientation between the two points -%4.2f degrees\n\n",
degrees (orientation (pointi, point2)));

if ((visible (pointl, point2, circle world) -- VISIBLE) -LL
(visible (point2, pointl, circle-_world) -- VISIBLE))

printf("\nThe first and second points are VISIBLE to each other.");

else if ((visible Cpointl, point2, Circle world) -- TANGENTIAL) LL
(visible (point2, pointl, circle-world) -- TANGENTIAL))

printf("\nhe first and second points are VISIBLE to each other and "1);

printf (11\ntheir line segment is TANGENTIAL to one or more circles "1);

printf ("in circle world.\n'):

else
printf("\nThe first and .second points are NONVISIBLE to each other.");

printf C"\nWnI);
scanf C11%c", &answer); /* hack to clear carriage return from buffer *

printf ("Do you want to check visibility between a new pair of points? "4);
scanf C11%c", &answer);

/*--

/* Calculate external, cross & center tangents between circles of interest: ~

if (circle world->degree >- 1)

printf "\nn");
scanf C"%c", &answer); /* hack to clear carriage return from buffer *

printf ("Do you want to check tangents between circles or points?U)
scanf (11%c", &answer);

else
answer - I'

while (answer -= 'y' 11 answer -~ 'Y')

printf M"n\nEnter the number of the first circle to check.\n");
printf ("(use zero for start point, -1 for goal point) \n\n");
printf C"1 first circle is #)
scanf C"Ud", Li);
if Ci1= 0) circlel = make circle (start, 0.0); /* start point *
else if (i1- -1) circlel = make-circle (goal, 0.0); /* goal point *
else circlel = findcircle Ci, circle-world);

printfC"\nnEnter the traversal mode of the first circle.\n 11);

232

model F '2;
while ((model <-1) 1AI (model M)

piintf(- .(Vilidmode. values are CCW +31, 'CW ",,Cintei,0):)

s1canf(i", &model);
p'rintf ("n");

printf (MnEnter the number of the second circle to-check.\n");
printf ("(use zero for start point, -11 for goal' point) \n\fi") ;
printf (1" second circle is #)

scanf' (nid", tj);
4 while 0i -- i)

printfC"\nPlease enter a circle-number different from thri first:)
scanf ("Wd', 0j)1
printf ("n"l):

if (j =-0) circle2 - make circle (start, 0.0O); /* start point *
else if (j --- 1) circle2 - make circle (goal, 0.0); /* goal point *
else circle2 - find-Circle (j, circle-world)-;

printf("\nEnter the traversal mode of the second circle.\n");
mode2 - 2;
while ((mode2 < -1) 11 (mode2 > 1))
U-

printf(" (Valid mode values are CCW +1, CW -1, Center 0):)

s9canf("%i", Amode2);
printf ("n"l)

circle-tangent (circlel, circle2, model, mode2, configl, config2);

/* Update circlel and circle2 due to CENTER case possibility *
circlel - configl->tangent.circle;
circle2 - config2->tangeijt_,circle,

pointl - circumference point (circlel, configl->tangent.angle);
point2 w circumference point (circle2, config2->tangent.angle);

printf ("\nl);
printf(C" Configurationl Configuration2 "4),

pzintf(", Modes\n");
printf(I C"_____________)______________
print f (C" \nn)
printf("1 xl yl anglel orientl x2 y2 angle2 "1);

printf ("orient2\n\n");
printf("%5.lf %5.lf %7.2f %7.2f %5.lf %5.lf %7.2f %7.2f "

pointl.x, pointl.y, degrees (configl->tangent.angle),
degrees (configl->orientation),
point2.x, point2.y, degrees (config2->tangent.angle),
degrees (config2->orientation));

if (model - LEFT) printf("L..");
else if (model -a RIGHT) printf("R..");
else if (model aaCENTER) printf("C..");
else printf("?.."1) ;
if (mode2 ==LEFT) printfC"L\n\n");
else if (mode2 ==RIGHT) printf("1R\n\n11);
else if (mode2 ==CENTER) printf("C\n\n"1);
else printf("?\n\n");

printf("\nnThe distance between the two tangent points =fnn1

distance (pointl, point2));

if ((visible (pointl, point2, circle world) .aTRUE) &G
(visible (point2, pointl, circle-world) aaTRUE))

printf C"\nhe first and second points a~re VISIBLE to each other.");

else if ((visible (pointl, point2, circle world) ==TANGENTIAL) &&
(visible (point2, pointl, circleworld) ==TANGENTIAL))

printf("\nThe first and second points an- VISIBLE to each other and "1,

"\ntheir line segment is TANGENTIAL to one or more circles in",

printf("\nhe first and second points are NONVISIBLE to each other.");

/* C-eate the tangent 'path' starting with a pseudo-segment *
segmentl = make-Segment (circlel.center, circlel.center);

kpathl = create path (segmentl);
arcl = make-arc (circlel, configl->tangent.angle,

configl->tangent.angle, model);
segment2 - make-segment (poirntl, point2);

233

augmentpath (ar63:, iegmeht2, pathi);

IS subsequent graphjpath voutput~path,6alls appenid data to the files. ~
giiph'jath (pathl, -circle ,world; GRAPH FILENAME);
outpuE path (pathi, AUV FIIENAME);
printfr ("\n\fi\nThis tanigent has been added to th6. output. files.");

printf ("\n\n\n");
scanhf &"c" answer); /* hack to-clear carriage return from bulffer 5

printf '("Do you want to test 'another set of circle, tirngents?)
scanf ("t ic", &answer),-
printf ("nll);

/*---------a---------------------- 7--------------- ------------ *

/*Determine search type and whether to plot each least cost leg found: 5

answer -11
while ((answer !- 'd') &6 (answer !- 'D') &&,

(answer 1- 'a') f& (answer I- WA))

if (answer 1- 1*1)
printf ("\n*** Please answer D for Dijkstra or A for A-star .. \n)

printf ("\nn") ;
scanf ("tecl, &answer); /* hack to clear carriage return from buffer*/

printf ("Do you want a Dijkstra search or an A-star search?
scanf ("tell, &answer);
printf (11\6\n");
if (answer- 'd' 11 answer -= D') search type - DIJKSTRA;
if (answer -- 'a' 11 answer WA) search type - A-STAR;

scanf ("tell, &answer); /* hack to clear carriage return from buffer
printf ("Do you want to plot and number each least Cost leg found?
.scanf (!'tcl, &answer);,
printf ("WnI),

if (answer -- 'yl 11 answer -- 'Y')
plot each leg - TRUE;

else plot-each-leg - FALSE;

/* ---

circle-search (search-type, plot each leg, circle-world, pathl, path2):*

-- /

/* pathl is now least cost path, path2 is all tangents 5

scanf ("tecl, &answer): /* hack to clear carriage return from buffer 5

printf ("\n\nDo you want to include the start to goal line on the graph? I,),-
scanf ("Wc', &answer);

if (answer -- 'y' 11 answer -a; YI)

graph path (pathO, circle world, GRAPHFILENAME):
output path (pathO, AUV-FIE:ENAME);

scanf (Iltc", &answer),
printf ("\n\nDo you want to include the least cost path in the output? 14);
scanf ("Wc", &answer);
if (answer -- IyV 11 answer -- 'Y')

graph path (pathl, circle world, GRAPHFILENAME);
output path (pathl, AUV FIL;ENAME);

scanf ("%c", &answer);
printf (H\n\nDo you want to include ALL circle tangents in the output? "9;
scanf ("%c", &answer);
if (answer - 'y' 11 answer -- 'Y')

graphpath (path2, circle world, GRAPHFILENAME);
output path (path2, AUV FILENAME);

/5 square off the graph data ~
center _graph_window (GRAPH -FILENAME, &xmin, fixmax, fiymin, &ymax,

GRAPH-STRETCH);

234

-- - --- --- -- --------* -

/* Check whether circle world is modeled in the NPS pool: *
scanf _(1"%c", &ahswer).;

printf ("\'n\nDb you-want theNPS pool superimposed on the graph? ;
scanf ("Wc", 4answer);
If (answer == y' F- answer == Y'),/* invert x-axis, draw-,pool lines *

xmin =145.0;-

xmax =-15.0;

ymin -- 50.;
ymax --110.0;

poihtl =makepoint C0.0, 0.0);
poinE2 -make, point (127.5, 0.0);
point3 =make point (127.5, 67.5),;-
point4 -make:point ' 0.0, 67.5);

segmentO - make segjment (pointl, point2);
pathO - create path (segmentO);
graph path (pathO, circle world, GRAPH FILENAME);

segmentO - make-segrment (point2, point3);
pathO - create-path (segmento);
graphpath (pathO, circle-world, GRAPHFILENAME);

segmentO - make segment (poinit3, point4);
pathO -create path (segmentO);
graph path (pathO, circle-world, GRAPH FILENAME);

segmentO - make-segment Cpoint4, pointi);
pathO - createpath (segmentO);
graphpath (pathO, circle-world, GRAPH FILENAME);

/* --------------------- --- /

1* Plot circle-world, tangents and path map Using sunview sunplot function: *

scanf ("Wc", &answer);
printf ("\n\nDo you want a sunview sunplot of the circle-world plotted? to);
scanf ("Wc", &answer);
if (answer -- 'y' 11 answer -- 'Y')

scanf ("Wc", &answer);
sprintf (command,

"graph -b -g 1 -x %f %f -y %f %f k %s I sunplot -s -c 800"1,
xmin, xmaxt ymin, ymax, GRAPH FILENAME);

printf ("\n\nts\n\n\n"I, command);
system (command);

else scanf (11c", &answer);

It---i

/* Print circle-world, tangents and path map using Un~.x graph function: 4

printf ("\n\nDo you want a hard copy of the circle-world graph plotted? 44);

scanf ('c, &answer);
if (answer - IyV 11 answer -- 'Y')

printf ("\n\nHow many copies do you want printed? 9)
scanf ("Wd", &copies);
if ((copies < 0) 11 (copies > 20))

printf (1"\nThe allowable range of copies is (0..20).");
printf ("\n\nHow many copies do you want printed?

scanf ("%do', &copies);

today - time (NULL);
strftime (date, 32, II%d %B Wo, localtime (&today));
scanf (11%c", &answer);
printf ("\n\nEnter a title to be printed on the graph: \n\n");
gets (title);
sprintf (command,

"graph -b -g 1 -1 \"%s %s\" -x %f %f -y %f %f < %s I lpr -g -h -#%d -Pap2"
A ,title, date, xmin, xmax, ymin, ymax, GRAPHFILENAME, copies);

printf ("\n\n%s\n\n\n', command);
system (command);

235

APPENDIX F. OBTAINING"NPS AUV INTEGRATED 'SIMULATOR

PROGRAMS "SOURCE CODE,

NPS AUV Integrated Simulator graphics ~sirfilation, programi, sonar classification

expert system and circle world path planning source code can be obtained on Internet

via anonymous FTP., Figure F.1I shows an example of how to obtain these files.

%ftp-taurus.ce.nps.navy.mil
Connected to taurus.cs.nps.navy.mil.
220,taurus FTP server (SunOS 4.1) ready.
Name- (taurus.cs.nps.navy.mil:brutzman): anonymous
331 Guest login ok, send ident as password.
Password: your name here
230 Guest logiW ok, access restrictions apply.
ftp> ad pub
250 CWD command successful.
ftp> binary
200 Type set to 1.
ftp> got auvaim.tar.Z
local: auvsim.tar.Z remote: Auvsim.tar.Z
200 PORT command successful.
150 Binary data connection for auvsim.tar.Z (131.120,1.20,1250) (814519 bytes).
226 Binary Transfer complete.
814519 bytes received in 1.38 seconds (576.32 Kbytes/s)
ftp> quit
221 Goodbye.

% unooupreas auvaim.tar.Z

% tar xf auvaim.tar

% la
AUV auvsonar.clp m35.d nps rightpool.off
AUVReadme auvaonar.log . m35_gyro.auv point.off
Makefile c search.c m35 raw.auv pool.auv
NPS-AUV cTrcle.auv materials.off pool cylinder.off
NPS-AUV.c circle.c rnine.off pool-lightsl.off
NPS AUV fn.c circle20.auv mine2.off pool lights2.off
auvligits.off circtest.c mine3.off poolsinapshot
auv 'mtls.off cylinder.off minehunt.auv screensnapshot
auvsim floor.off nps auv.off showsgibwonly.c
auvsim.c hull.off nps-farpool .off sphere. off
auvsim.h loop.auv npsleftpool.off test.auv
auvsim.tar loop.d nps nearpool .off
auvsonar m35.auv nps-pool.off

%auvaim /* to execute on your iris workstation! *

Figure F.1 Obtaining NPS AUV Integrated Simulator files via Internet

236

APPENDIX G,. VIDEOTAPE DEMONSTRATION OF RESULTS.

A videotape appendix Is included to demonstrate, operation and usefulness of the

NPS AUV Integrated Simulator. The first video segment is the original segment

submitted to the'IEEE Robotics and Automation, Conference 1992

(Brutzman Floyd Whalen"92). Video abstract and mission profile are included in

Figures G.1 and G.2. Additional videotape demonstrations show graphics simulation

program functionality and visualization of sonar'classification, circle world path

planning and minefield search applications.

237

Naval Postgraduate School Auton6mous UnderwaterVehicie

Charles A. Floyd, Donaid P. Brutzman, and Russell Whalen
Computer. Science Department, NavalPostgraduate School

Monterey California 93943- USA, brutzman@taurus.cS.nps.navy.mil

Abstract

The Naval Postgraduate School (NPS) AutonomoUs
Underwater Vehicle (AUV), is an eight foot long, 387-pound untethered ' robot
submarine designed for research in adaptive control, mission planning,
navigation, mission execution, and post-mission data analysis. The NPS AUV
has four active fixed-tbeam high-resolution ultrasonic sonars which point
orthogonally ahead; downward and to port and starboard. Neutral'buoyancy,
eight plane surfaces and twin propellers allow precise maneuverability.

Simulation programs running on Iris three-dimensional
graphics workstations :are usedto evaluate NPS AUV software and predict
system performance prior to each mission. During simulation a complete
hydrodynamics model accurately represents physical response characteristics
through six degrees of freedom.

The videotaped NPS AUV test mission was performed in the
Olympic-size NPS swimming pool and programmed to include waypoint
maneuvering, sonar ranging, and a full pool traversal while recording pertinent
sensor and posture values at a 10 Hz data rate.

Graphics simulations can replay in real time actual data
collected in the pool. The taped playback demonstrates reconstruction and
visualization of vehicle track, control systems dynamic response, logic and
state changes, plotted locations of individual sonar returns, and expert system
classification of detected objects.

Ongoing NPS AUV research is investigating linear and
nonlinear control techniques, advanced sonar classification, failure mode
analysis using neural networks, dynamic path and search planning, use of
cross-body thrusters for hovering control, and alternate AUV operating
architectures.

Figure G.1 NPS AUV video abstract

238

shallow end 4!

00)

UCO

CO

hCL 0
0

0 1
z0

,8 pue deep

Figure G.2 Mission profile of NPS AUV video

239

LIST OF REFERENCES

Akman, Varol,. Unobstructed Shortest Paths in Polyhedral Environments,
Springer-Verlag, Berlin, 1987.

Arthur, VADM'Stanley R. and Pokrant, Marvin, "Desert Storm at Sea," U.S. Naval
Institute Proceedings, vo1. 117, no. 5, May 1991, pp. 82-87.

Asano, Takano, Asano, Tetsuo, Guibas, Leonidas, HershbergerJohn; and'Imai,
Hiroshi, "Visibility-Polygon Search and Euclidean Shortest Paths," Proceedings of the
26th Symposium On Foundations of Computer Science, 1985, pp. 155-164.

Badler, Norman i, Barsky, Brian A. andZeltzner, David, ed', Making Them Move:
Mechanics, Control. and Animation of Articulated Figures, Morgan Kaufmann
Publishers Inc., San, Mateo, California, 1991.

Badr, Salah M., Byrnes, Ronald B., Brutzrna, Donald P. and Nelson, Michael.L.,
Real-Time Systems, technical report NPS-CS-92-004, Naval Postgraduate School,
Monterey, California, February 1992.

Baerson, Kevin M., "Flight Lab Conquers Real-Time Unix," Federal Computer Week,
December 2, 1991, p. 24.

Barrow, Theodore H., Yurchak, John M. and Zyda, Michael J., Distributed Computer
Communications In Support Of Real-Time Visual Simulations, M.S. Thesis, Naval
Postgraduate School, Monterey, California, September 1988.

Besl, P.J. and Jain, R.C., "Three-Dimensional Object Recognition," Computing
Surveys, vol. 17 no. 1, March 1985, pp. 77-145.

Blackman, Maurice, The Design of Real-Time Applications, John Wiley and Sons Ltd.,
London, 1976.

Blidberg, D.R., Chappell, S., Jalbert, J., Turner, R., Sedor, G. and Eaton, P.,
"The EAVE AUV Program at the Marine Systems Engineering Laboratory,"
Proceedings of 1st IARP Workshop on Mobile Robots for Subsea Environments,
Monterey, California, October 1990, pp. 33-42.

Bobrow, Daniel G., "Dimensions of Interaction," Al Magazine, vol. 12 no. 3, Fall
1991, pp. 64-80.

240

Brooke, Tom, 'The Art of Production.Systems," Al Expert, vol. 7 no. 1, Jauary 1992,.
pp. 3035.

Brooks, Frederick P. Jr., 'GraspingReality through Illusion: Interactive Graphics
Serving Science," included in "Implementing and Interacting with Real-time
Microworlds," course 29, ACM SIGGRAPH onference, Boston, Massachusetts,
31 July-4 August 1989, pp. 3-1.throUgh 3-1.

Brutzman, Donald P. and Compton, Mark A., "AUV Research at the Naval
Postgraduate School, ' Sea Technology, vol. 32 no. 12, December 1991, pp. 35-40.

Brutzman, Donald P., Floyd, Charles A. and Whalen, Russell, "Naval Postgraduate
School Autonomous Underwater Vehicle,", Video Proceedings ofthe IEEE
International'Conference on Robotics and Automation 92, Nice, France, May 1992.

Brutzman, Donald P., Kanayama, Yutakaand Zyda, Michael J., "Integrated Simulation
for Rapid Development of Autonomous Underwater Vehicles", Proceedings of the
IEEE Oceanic Engineering Society ConferenceAUV 92, Washington DC, June 1992.

Brutzman, Donald P., Compton, Mark A. and Kanayama, Yutaka, "Autonomous Sonar
Classification using Expert Systems," draft article, OCEANS 92 conference, Oceanic
Engineering Society of the IEEE, Newport, Rhode Island, October 26-29, 1992.

Burke, JOC(SW) Kip, "More Than an Eye in the Sky," Surface Warfare,
November/December 1991, pp. 8-9.

Bymes, R.B., MacPherson, D.L., Kwak, S.H., Nelson, M.L. and McGhee, R.B., "An
Experimental Comparison of Hierarchical and Subsumption Software Architectures for
Control of an Autonomous Underwater Vehicle," presented at IEEE Oceanic
Engineering Society Symposium on Autonomous Underwater Vehicles,
Washington DC, June 2-3, 1992.

Canny, John F., The Complexity of Robot Motion Planning, The MIT Press,
Cambridge, Massachusetts, 1988.

Comer, Douglas E., Internetworking with TCP/IP Volume I: Principles, Protocols and
Architecture, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1991.

Compton, LCDR Mark A., Minefield Search and Object Recognition for Autonomous
Underwater Vehicles, Master's Thesis, Naval Postgraduate School, Monterey,
California, March 1992.

241

Copton, LCDR Mark A., "Modeling the Sonar Environment,".unpublished paper,
Naval'Postgraduate School, Monterey, California, Septembei 19914.

Corkill, Daniel, "Blackboard Systems," AI Expert, vol. 6 no. 9, September 1991,
pp. 40-47.

Cramer, Bill, "Writing Real-Tune-Programs-under UNIX," Dr..Dobb's Journal,
vol. 13 no. 6, June - 1988, pp. 18-29.

Dasgupta, Partha, LeBlanc, Richard J.,,Jr., Ahamad, Mustaque, and Ramachandran,
Umakishore, '"he Clouds Distributed Operating System," Computer, November 1991,
pp. 34-44.

Davis, Daniel, "Control of MBARI ROV Camera and Tools over a Network,"
Proceedings of 1st JARP Workshop on Mobile Robots for Subsea Environments,
Monterey, California, October.23-26, 1990, pp. 137-142.

Deitel, Harvey M., An Introduction to Operating Systems, Addison-Wesley Publishing
Co. Ltd., Reading, Massachusetts, 1990.

Dibble, Peterj OS-9 Insights: An Advanced'Programmers Guide to OS-9/68000-
Microware Systems 'Corporation, Des Moines, Iowa, 1988.

Durfee, Edmund H. and Lesser, Victor R-., "Planning to Meet*Deadlines in a
Blackboard-based Problem Solver," COINS Technical Report 87-01, IEEE Tutorial on
Real-Time Systems, Computer Society Press of the IEEE, Washington DC, 1988.

Ethernet Installation Guide, Digital Equipment Corporation, Maynard, Massachusetts,
1983.

Etter, Paul C., Underwater Acoustic Modeling: Principles, Techniques and
Applications, Elsevier Applied Science, London, England, 1991.

Falk, Howard, "Developers Target UNIX and Ada with Real-Time Kernels,"
Computer Design, vol. 27 no. 7, 1 April 1988, pp. 55-70.

Floyd, Charles A., Design and Implementation of a Collision Avoidance System for
the NPS Autonomous Underwater Vehicle (AUV II) Utilizing Ultrasonic Sensors,
Master's Thesis, Naval Postgraduate School, Monterey, California, September 1991.

242

Floyd, Charles A., Kanayama, Yutaka, and Magrino, Ciristopher, "Underwater
Obstacle Recognition using a Low-Resolution Sonar;" Proceedings-of the Seventh
International Symposium on Unmanned Untethered Submersible Technology,
University of New Hampshire, Durham, New Hampshire, September 1991,
pp. 309-327.

GESPAC Inc.,Introduction to OS-9/68000, class notes, Mesa, Arizbna, 1989.

Giarratano, Joseph C., CUPS User's-Guide, NASA, Lyndon B. Johnson Space Center,
January 1991.

Good, LT Michael R., Design and Construction of a Second Generation A UV,
Master's Thesis, Naval Postgraduate School, Monterey, California, December 1989.

Gorey, Kevin, "Periodic Table of the Irises," Silicon Graphics Inc., Mountain View,
California, February 1991.

Hamming, Richard W., Numerical Methods for Scientists and Engineers, second
edition, McGraw-Hill Book Co., New York, 1973.

Hart, Peter E., Nilsson, Nils.J. and Raphael, Bertram, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems,
Man, and Cybernetics, vol. SSC-4 no. 2, July 1968, pp. 100407.

Healey, A.J., McGhee, R.B., Cristi, R., Papoulias, F.A., Kwak, S.H., Kanayama, Y.,
and Lee, Y., "Mission Planning, Execution, and Data Anaiysis-for the NPSAUV II
Autonomous Underwater Vehicle", Proceedings of the First iARP Workshop on
Mobile Robots for Subsea Environments, Monterey, California, October 23-26, 1990,
pp. 177-186.

Healey, A.J., Papoulias, F.A., and MacDonald, G., "Design and Experimental
Verification of a Model Based Compensator for Rapid AUV Depth Control,"
Proceedings from the 6th International Symposium on Unmanned Untehered
Submersible Technology, University-of New Hampshire, Durham, New Hampshire,
June 12-14, 1989, pp. 458-474.

Hebert, Martial, Kanade, Takeo and Kweon, InSo, "3-D Vision Techniques for
Autonomous Vehicles," NSF Range Image Understanding Workshop, 1988,
pp. 273-337.

Hildebrand, Dan, "Message-Passing Operating Systems," Dr. Dobb's Journal,
vol. 13 no. 6, June 1988, pp. 34-48.

243

Interview with Patrick Hale, DARPA UUV Project Manager; C.S. Draper Laboratories
Cambridge, Massachusetts by the author, December 11, 1991.

Interview between Anthony J. Healey, Chair, Mechanical Engineering Department,
Naval Postgraduate School, and LCDR Mark Compton and the author, 9 August 91.

Interview between Robert B. McGhee, Chair, Computer Science Department, Naval
Postgraduate School, and LCDR Mark Compton and the author, 8 August 91.

Iyengar, S. Sitharama and Elfes, Alberto, ed., Autonomous Underwater Robots:
Perception, Mapping and Navigation, volume 1, IEEE Computer Society Press,
Los Alamitos, California, 1991.

Jackson, Peter, Introduction to Expert Systems, Addison-Wesley Publishing Co. Inc.,
Workingham, England, 1991.

Jurewicz, CDR Thomas A., A Real-Time Autonomous Underwater Vehicle Dynamic
Simulator, Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1990.

Kahaner, David K., "TRON (The Real-Time Operating System Nucleus)," Scientific
Information Bulletin, vol. 16 no. 3, Office of Naval Research Asian Office,
July-September 1991, pp. 11-19.

Kanayama, Yutaka, Noguchi, Tetsuo, and Hartman, Bruce, "Sonar Data Interpretation
for Autonomous Mobile Robots," unpublished paper, Naval Postgraduate School,
Monterey, California, 1990.

Kanayama, Yutaka and Noguchi, Tetsuo, "Spatial Learning by an Autonomous Mobile
Robot with Ultrasonic Sensors," University of California Santa Barbara Department of
Computer Science Technical Report TRCS89-06, February 1989.

Kanayama, Yutaka and Brutzman, Donald P., "Shortest Path Planning in a Circle
World", unpublished paper, Naval Postgraduate School, Monterey, California,
September 1991.

Kanayama, Y. and De Haan, G., "A Mathematical Theory of Safe Path Planning,"
Technical Report of Computer Science Department TRCS88-16, University of
California at Santa Barbara, California, 1988.

Kanayama, Yutaka, "Advanced Robotics and Spatial Reasoning", class notes, Naval
Postgraduate School, Monterey, California, May 1991.

244

Kasahara, Hironori, "Parallel Processing of Robot-Arm Control Computation on a
Multimicroprocessor System," IEEE Tutorial on Real-Time Systems, Computer Society
Press of the IEEE, Washington DC, 1988.

Kenny, Kevin B. and Lin, Kwei-Jay, "Building Flexible Real-Time Systems using the
Flex Language,"' Computer, May 1991, pp. 70-78.

King, LT David Maurice and Prevatt, LCDR Richard Montgomery II, "Rapid
Production of Graphical User Interfaces," Master's Thesis, Naval Postgraduate School,
Monterey, California, December 1990.

Laumond, Jean-Paul, "Obstacle Growing in a Nonpolygonal World," Information
Processing Letters, vol. 25 no. 1, April 1987, pp. 41-50.

Leatherman, Brent, "An Approach to Integration of Real-Time Software for
Autonomous Underwater Vehicles," Masters Thesis, Naval Postgraduate School,
Monterey California, September 1991.

Locke, John, Physical Layout of the Computer Science Department Network, general
newsgroup posting, Naval Postgraduate School, Monterey, California, January 1991.

Lozano-Pdrez, TomAs and Wesley, Michael A., "An Algorithm for Planning
Collision-Free Paths among Polyhedral Obstacles," Communications of the ACM,
vol. 22 no. 10, October 1979, pp. 560-570.

Luo, R.C. and Kay, M.G., "Multisensor Integration and Fusion in Intelligent Systems,"
IEEE Transactions on Systems, Man and Cybernetics, vol. 19 no. 5,
September/October 1989, pp. 901-931.

Makris, Dionysios, "Real-Time Scheduling and Synchronization for the Naval
Postgraduate School Autonomous Underwater Vehicle," Masters Thesis, Naval
Postgraduate School, Monterey California, December 1991.

Manber, Udi, Introduction to Algorithms: A Creative Approach, New York,
Addison-Wesley, 1989, pp. 204-208.

Mathworks, Inc., PC-MATLAB for MS-DOS Personal Computers, South Natick,
Massachusetts, 1989.

Mellichamp, Duncan A., ed., Real-Time Computing with Applications to Data
Acquisition and Control, Van Nostrand Reinhold Co., New York, 1983.

245

Moravec, Hans, "The Stanford Cart and the CMU Rover," Proceedings of the'IEEE,
vol. 71 no. 7, July 1983, pp. 872-884.

Moravec, Hans P., Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover, Ph.D. Thesis, Report STAN-CS-80 813, Stanford University,
September 1980.

Mullender, Sjoerd, sunplot computer program, Free University, Amsterdam,
Netherlands, 1987.

Myers, Laura, "Silicon Graphics to introduce new workstation today," The Herald,
Monterey, California, p. 4B, July 22, 1991.

NASA Software Technology Branch, CULPS Reference Manual, Lyndon B. Johnson
Space Center, Houston, Texas, 1991.

Ong, Seow Meng, A Mission Planning Expert System with Three-Dimensional Path
Optimization for the NPS Model 2 Autonomous Underwater Vehicle, Master's Thesis,
NavalPostgraduate School, Monterey, California, June 1990.

Pappas, George, Shotts, William, O'Brien, Mack and Wyman, William, "The
DARPA/Navy Unmanned Undersea Vehicle Program," Unmanned Systems,
vol. 9 no. 2, Spring 1991, pp. 24-30.

Payton, David W. and Bihari, Thomas E., "Intelligent Real-Time Control of Robotic
Vehicles," Communications of the ACM, vol. 34 no. 8, August 1991, pp. 49-63.

Polmar, Norman, The Ships and Aircraft of the U.S. Fleet, Naval Institute Press,
Annapolis, Maryland, 1987, p. 233.

Polmar, Norman, "Robot Submarines," U.S. Naval Institute Proceedings,
vol. 117 no. 9, September 1991, pp. 122-123.

Preparata, Franco P., and Shamos, Michael Ian, Computational Geometry: An
Introduction, Springer-Verlag, New York, 1985, pp. 10-11.

Sacerdoti, Earl D., "Managing Expert System Development," Al Expert, vol. 6 no. 5,
May 1991, pp. 26-33.

Schwartz, J.T. and Sharir, M., "A Survey of Motion Planning and Related Geometric
Algorithms," Artficial Intelligence, vol. 37 no.s 1-3, December 1988, pp. 157-169.

246

L

Stallings, William, Data and ComputerCommunications, Macmillan Publishing,

Company, New York, 1988.

'V Stankovic, John A., ed., "Real-Time Computing Systems: The Next Generation,"

IEEE Tutorial on Real-Time Systems, Computer Society Press of the IEEE,
Washington DC, 1988.

Stewart, W. Kenneth, "Three-Dimensional Modeling of Seafloor Backscatter from
Sidescan Sonar for Autonomous Classification- and.Navigation," Proceedings of the 6th
International Symposium on Unmanned Untethered Submersible Technology,
University of New Hampshire, Durham, NewHampshire, June 1989,.pp. 372-392.

Thalmann, Nadia Magnenat, and Thalmann, Daniel, Computer Animation: Theory and
Practice, second edition, Springer-Verlag, Tokyo, Japan, 1990.

Welzl, Emo, "Constructing the Visibility Graph for n Line Segments in O(n2) Time",
Information Processing Letters, vol. 20 no. 4, 10-May 1985, pp. 167-171.

West, RADM Ralph W., Jr., Superintendent, Naval Postgraduate School, memorandum
to LCDR Mark Compton and the author, 16 August 91.

Wright, M. Lattimer, Green, Milton W., Fiegi, Gudrun, and Cross, Perry F.,
"An Expert System for Real-Time Control," IEEE Tutorial on Real-Time Systems,
Computer Society Press of the IEEE, Washington DC, 1988.

Zyda, Michael J., "Object File Format", Graphics and Video Laboratory, unpublished
course text, Naval Postgraduate School, Monterey, California, 2 April 1991,
pp. 7.1-7.81.

Zyda, Michael J., McGhee, Robert B., Kwak, Sehung, Nordman, Douglas B., Rogers,
Ray C. and Marco, David, "Three-Dimensional Visualization of Mission Planning and
Control for the NPS Autonomous Underwater Vehicle," IEEE Journal of Oceanic
Engineering, vol. 15 no. 3, July 1990, pp. 217-221.

Zyda, Michael J., Jurewicz, Thomas A., Floyd, Charles A. and McGhee, Robert B.,
"Physically Based Modeling of Rigid Body Motion in a Real-Time Graphical
Simulator," unpublished paper, Naval Postgraduate School, Monterey, California,
September 1991.

247

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria Virginia 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey California 93943-5002

3. Dr. Robert B. McGhee
Code CS/Mz
Chairman, Computer Science Dpartment
Naval Postgraduate School
Monterey California 939435000

4. Dr. Anthony J. Healey
Code ME/Hy
Chairman, Mechanical Engineering Department
Naval Postgraduate School
Monterey California 93943-5000

5. Dr. Yutaka Kanayama
Code CS/Ka
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

6. Dr. Michael J. Zyda
Code CS/Zk
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

248

7., CAPT AlanR. ,Beam USN
DARPA UWO- PRC Inc.
1555 Wilson Boulevard
Suite 600
Arlington Virginia, 22209

8. MAJ David Neyland USAF
DARPO ASTO
3701 North Fairfax Drive
Arlington Virginia 22203

9. RADM George R. Sterner USN
Program Executive Officer
Submarine Combat and Weapons Systems
Department of the Navy
Washington DC 20362-5101

10. Commander
Naval Sea Systems Command
ATTN: CAPT William Shotts, PMO-403
Washington DC 20362-5101

11. Dr. Richard Guertin
OP-09BC
Pentagon 4D386
Washington DC 20301-5000

12. Chief of Naval Research
800 North Quincy Street
Arlington Virginia 22217-5000

13. Commander
Submarine Development Squadron TWELVE
Naval Submarine Base
Groton Connecticut 06340

14. Commanding Officer
Naval Underwater Systems Center
Newport Rhode Island 02841-5047

249

15. Commanding Officer
Naval Coastal:Systems Center
Panama City Florida 32407-5000

16. Commander
Naval Surface Weapons Center
Dahlgren Virginia 22448-5000

17. Commanding Officer
David Taylor Research Center
Bethesda Maryland 20084-5000

18. Commander
Naval Oceans Systems Center
San Diego California-92152-5000

19. Mr. Randy Brill
Naval Oceans Systems Center
PO Box 997
Kailua Hawaii 96734-0996

20. Director
Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory
Washington DC 20375-5000

21. Mr. Patrick Hale
DARPA UUV Program Manager
C.S. Draper Laboratories
555 Technology Square
Cambridge Massachusetts 02139

22. Dr. D. Richard Blidberg
Marine Systems Engineering Laboratory
Marine Program Building
University of New Hampshire
Durham New Hampshire 03824-3525

250

23. Dr. james G. Bellingham1
Sea Grant College Program
Massachusetts Institute of Technology
292 Main Street
Cambridge Massachusetts 02139

24. Dr. Dana R. Yoerger
Deep Submergence Laboratory
Department of Applied Ocean Physics and Engineering
Woods Hole Oceanographic Institute
Woods Hole Massachusetts 02543

25. Dr. Stanley Dunn
Advanced Marine Systems Group
Ocean Engineering Department
Florida Atlantic University
Boca Raton Florida 33431

26. CDR Charles A. Floyd
Computer Science Department
Chauvenet Hall 9F
U.S. Naval Academy
572 Holloway Road
Annapolis Maryland 21402-5002

27. Dr. Peter Purdue
Code OR/Pd
Chairman, Operations Research Department
Naval Postgraduate School
Monterey California 93943-5000

28. Dr. Se-Hung Kwak
Code CS/Kw
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

29. Dr. Luqi
Code CS/Lq
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

251

30. Dr. Yuh-Jeng Lee
CodeCSILe
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

31. Mr. David Pratt
Code CS/Pr
Computer Science Department
Naval'Postgraduate School
Monterey California 93943-5000

32. MA Ronald B. Byrnes USA
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

33. LCDR David L. MacPherson USN
Computer Science Department
Naval Postgraduate School
Monterey California 93943-5000

34. LCDR Donald P. Brutzman USN
Operations Research Department
Naval Postgraduate School
Monterey California 93943-5000

252

